On adaptive estimation of probability density functions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 141-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents a method of adaptive estimation for a class of probability density functions. This method is a continual analogue of some known methods. Bibl. – 10 titles.
@article{ZNSL_2009_368_a10,
     author = {I. A. Ibragimov},
     title = {On adaptive estimation of probability density functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--155},
     year = {2009},
     volume = {368},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a10/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On adaptive estimation of probability density functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 141
EP  - 155
VL  - 368
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a10/
LA  - ru
ID  - ZNSL_2009_368_a10
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On adaptive estimation of probability density functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 141-155
%V 368
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a10/
%G ru
%F ZNSL_2009_368_a10
I. A. Ibragimov. On adaptive estimation of probability density functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 141-155. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a10/

[1] N. N. Chentsov, “Otsenka neizvestnoi plotnosti raspredeleniya po nablyudeniyam”, Doklady AN SSSR, 147:1 (1962), 45–48 | MR | Zbl

[2] N. N. Chentsov, Izbrannye trudy. Matematika, Fizmatgiz, M., 2001

[3] I. A. Ibragimov, R. Z. Khasminskii, Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR

[4] A. Tsybakov, Introduction to Nonparametric Estimation, Springer Series in Statistics, Springer, 2009 | DOI | MR | Zbl

[5] A. Tsybakov, Introduction á l'estimation non-parametric, Springer, 2004 | MR | Zbl

[6] W. Hoeffding, “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl

[7] A. N. Shiryaev, Zadachi po teorii veroyatnostei, MNTsMO, M., 2006

[8] G. Khardi, Dzh. Littlvud, Dzh. Polia, Neravenstva, IL, M., 1948

[9] D. Donoho, I. Johnstone, G. Kerkyacharian, D. Picard, “Denstity estimation by wavelet thresholding”, Ann. Statist., 24 (1996), 508–539 | DOI | MR | Zbl

[10] A. Juditsky, “Wavelet estimators: Adapting to unknown smoothness”, Math. Methods Statist, 6 (1997), 1–25 | MR | Zbl