To solving problems of algebra for two-parameter matrices. 5
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 145-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the series of papers devoted to surveying and developing methods for solving the following problems for a two-parameter matrix $F(\lambda,\mu)$ of general form: exhausting points of the mixed regular spectrum of $F(\lambda,\mu)$; performing operations on polynomials in two variables (computing the GCD and LCM of a sequence of polynomials, division of polynomials and factorization); computing a minimal basis of the null-space of polynomial solutions of the matrix $F(\lambda,\mu)$ and separation of its regular kernel; inversion and pseudoinversion of polynomial and rational matrices in two variables, and solution of systems of nonlinear algebraic equations in two unknowns. Most of the methods suggested are based on rank factorizations of a two-parameter polynomial matrix and on the method of hereditary pencils. Bibl. – 7 titles.
@article{ZNSL_2009_367_a9,
     author = {V. N. Kublanovskaya},
     title = {To solving problems of algebra for two-parameter matrices.~5},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--170},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a9/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - To solving problems of algebra for two-parameter matrices. 5
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 145
EP  - 170
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a9/
LA  - ru
ID  - ZNSL_2009_367_a9
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T To solving problems of algebra for two-parameter matrices. 5
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 145-170
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a9/
%G ru
%F ZNSL_2009_367_a9
V. N. Kublanovskaya. To solving problems of algebra for two-parameter matrices. 5. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 145-170. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a9/

[1] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 1”, Zap. nauchn. semin. POMI, 359, 2008, 107–149 | MR

[2] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 2”, Zap. nauchn. semin. POMI, 359, 2008, 150–165 | MR

[3] V. N. Kublanovskaya, V. B. Khazanov, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 3”, Zap. nauchn. semin. POMI, 359, 2008, 166–207 | MR

[4] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 4”, Zap. nauchn. semin. POMI, 367, 2009, 121–144 | MR

[5] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, S.-Peterburg, 2004

[6] V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 7–328 | MR | Zbl

[7] V. N. Kublanovskaya, V. N. Simonova, “Ob odnom podkhode k resheniyu sistem nelineinykh algebraicheskikh uravnenii”, Zap. nauchn. semin. POMI, 202, 1992, 71–96 | MR | Zbl