Bounds for the inverses of $PM$- and $PH$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 75-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents new bounds for the inverses of the so-called $PM$- and $PH$-matrices. Also bounds for the spectral radii of the inverses to $PM$- and $PH$-matrices are obtained, and the monotonicity of these bounds with respect to the underlying partition of the index set is established. Finally, the so-called quasi-$PM$- and quasi-$PH$-matrices are introduced, and bounds for the inverses of such matrices are suggested. Bibl. – 10 titles.
@article{ZNSL_2009_367_a6,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the inverses of $PM$- and $PH$-matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--109},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a6/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the inverses of $PM$- and $PH$-matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 75
EP  - 109
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a6/
LA  - ru
ID  - ZNSL_2009_367_a6
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the inverses of $PM$- and $PH$-matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 75-109
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a6/
%G ru
%F ZNSL_2009_367_a6
L. Yu. Kolotilina. Bounds for the inverses of $PM$- and $PH$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 75-109. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a6/

[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[2] L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118 | MR

[3] V. P. Chistyakov, “K otsenke perronova kornya neotritsatelnykh matrits”, Dokl. AN SSSR, 246 (1979), 548–550 | MR | Zbl

[4] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[5] M. Fiedler, V. Pták, “Generalized norms of matrices and the location of the spectrum”, Czech. Math. J., 12 (1962), 558–571 | MR | Zbl

[6] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR | Zbl

[7] L. Yu. Kolotilina, “Bounds for the infinity norm of the inverse for certain $M$- and $H$-matrices”, Linear Algebra Appl., 430 (2009), 692–702 | DOI | MR | Zbl

[8] M. Marcus, H. Minc, Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl

[9] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[10] F. Robert, “Blocs $H$-matrices et convergence des méthodes itérative classiques par blocs”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl