Improved bounds for the recursion width in congruent type methods for solving systems of linear equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 33-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The iterative method MINRES-CN is examined as a tool for solving systems of linear equations whose coefficient matrices are low-rank perturbations of symmetric and conjugate-normal matrices. Certain possibilities of improving a priori bounds for the recursion width in this method are indicated. Bibl. – 11 titles.
@article{ZNSL_2009_367_a3,
     author = {Kh. D. Ikramov},
     title = {Improved bounds for the recursion width in congruent type methods for solving systems of linear equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--44},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Improved bounds for the recursion width in congruent type methods for solving systems of linear equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 33
EP  - 44
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a3/
LA  - ru
ID  - ZNSL_2009_367_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Improved bounds for the recursion width in congruent type methods for solving systems of linear equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 33-44
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a3/
%G ru
%F ZNSL_2009_367_a3
Kh. D. Ikramov. Improved bounds for the recursion width in congruent type methods for solving systems of linear equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 33-44. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a3/

[1] M. Dana, A. G. Zykov, Kh. D. Ikramov, “Metod minimalnykh nevyazok dlya spetsialnogo klassa lineinykh sistem s normalnymi matritsami koeffitsientov”, Zhurnal vychisl. matem. i matem. fiz., 45 (2005), 1928–1937 | MR | Zbl

[2] L. Elsner, Kh. D. Ikramov, “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl

[3] M. Dana, Kh. D. Ikramov, “Esche raz o reshenii sistem lineinykh uravnenii, matritsy kotorykh yavlyayutsya malorangovymi vozmuscheniyami ermitovykh matrits”, Zap. nauchn. semin. POMI, 334, 2005, 68–77 | MR | Zbl

[4] Kh. D. Ikramov, L. Elzner, “O matritsakh, dopuskayuschikh unitarnoe privedenie k lentochnomu vidu”, Mat. zametki, 64:6 (1998), 871–880 | DOI | MR | Zbl

[5] M. Gasemi Kamalvand, Kh. D. Ikramov, “Malorangovye vozmuscheniya normalnykh i sopryazhenno-normalnykh matrits i ikh kompaktnye formy otnositelno unitarnykh podobii i kongruentsii”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2009, no. 3, 5–11 | MR

[6] A. Bunse-Gerstner, R. Stöver, “On a conjugate-gradient type method for solving complex symmetric linear systems”, Linear Algebra Appl., 287 (1999), 105–123 | DOI | MR | Zbl

[7] M. Gasemi Kamalvand, Kh. D. Ikramov, “Ob odnom metode kongruentnogo tipa dlya lineinykh sistem s sopryazhenno-normalnymi matritsami koeffitsientov”, Zhurnal vychisl. matem. i matem. fiz., 49 (2009), 211–224 | MR

[8] Kh. D. Ikramov, “O privedenii kompleksnykh matrits k kompaktnym formam posredstvom unitarnykh kongruentsii”, Mat. zametki, 82:4 (2007), 550–559 | DOI | MR | Zbl

[9] M. Gasemi Kamalvand, Kh. D. Ikramov, “Malorangovye vozmuscheniya simmetrichnykh matrits i ikh kompaktnye formy otnositelno unitarnykh kongruentsii”, Zhurnal vychisl. matem. i matem. fiz., 49 (2009), 595–600 | MR

[10] H. Fassbender, Kh. D. Ikramov, “Some observations on the Youla form and conjugate-normal matrices”, Linear Algebra Appl., 422 (2007), 29–38 | DOI | MR | Zbl

[11] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR