Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 27-32
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that $n\times n$ solutions $A$ and $B$ of the matrix equation
$$
X\overline X=\delta I,
$$
where $\delta$ is one and the same scalar for both matrices, are unitarily congruent if and only if
$$
\operatorname{tr}(A^*A)^k=\operatorname{tr}(B^*B)^k,\qquad k=1,2,\dots,n.
$$
Bibl. – 8 titles.
@article{ZNSL_2009_367_a2,
author = {Kh. D. Ikramov},
title = {Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--32},
publisher = {mathdoc},
volume = {367},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/}
}
TY - JOUR AU - Kh. D. Ikramov TI - Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 27 EP - 32 VL - 367 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/ LA - ru ID - ZNSL_2009_367_a2 ER -
Kh. D. Ikramov. Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 27-32. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/