@article{ZNSL_2009_367_a2,
author = {Kh. D. Ikramov},
title = {Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--32},
year = {2009},
volume = {367},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/}
}
TY - JOUR AU - Kh. D. Ikramov TI - Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 27 EP - 32 VL - 367 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/ LA - ru ID - ZNSL_2009_367_a2 ER -
Kh. D. Ikramov. Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 27-32. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/
[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type. I”, Pacific J. Math., 12 (1962), 1405–1416 | DOI | MR | Zbl
[3] Y. Hong, R. A. Horn, “A characterization of unitary congruence”, Linear and Multilinear Algebra, 25 (1989), 105–119 | DOI | MR | Zbl
[4] A. George, Kh. D. Ikramov, “Unitary similarity of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 349 (2002), 11–16 | DOI | MR | Zbl
[5] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii algebr, porozhdaemykh parami ortoproektorov”, Zap. nauchn. semin. POMI, 323, 2005, 5–14 | MR | Zbl
[6] R. A. Horn, D. I. Merino, “A real-coninvolutory analog of the polar decomposition”, Linear Algebra Appl., 190 (1993), 209–227 | DOI | MR | Zbl
[7] M. N. M. Abara, D. I. Merino, A. T. Paras, “Skew-coninvolutory matrices”, Linear Algebra Appl., 426 (2007), 540–557 | DOI | MR | Zbl
[8] Kh. D. Ikramov, Kh. Fassbender, “Kvadratichno-normalnye i kongruentno-normalnye matritsy”, Zap. nauchn. semin. POMI, 367, 2009, 45–66 | MR