Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 27-32

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that $n\times n$ solutions $A$ and $B$ of the matrix equation $$ X\overline X=\delta I, $$ where $\delta$ is one and the same scalar for both matrices, are unitarily congruent if and only if $$ \operatorname{tr}(A^*A)^k=\operatorname{tr}(B^*B)^k,\qquad k=1,2,\dots,n. $$ Bibl. – 8 titles.
@article{ZNSL_2009_367_a2,
     author = {Kh. D. Ikramov},
     title = {Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--32},
     publisher = {mathdoc},
     volume = {367},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 27
EP  - 32
VL  - 367
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/
LA  - ru
ID  - ZNSL_2009_367_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 27-32
%V 367
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/
%G ru
%F ZNSL_2009_367_a2
Kh. D. Ikramov. Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 27-32. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a2/