A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 195-201

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Lidstone boundary-value problem $$ u^{(4)}+q(t)\,u=f(t),\quad01, $$ $$ u(0)=u''(0)=u(1)=u''(1)=0 $$ conditions of solvability are obtained for nonintegrable functions $q(t)$ and $f(t)$, and a computable error bound for the Ritz method is established. Bibl. – 3 titles.
@article{ZNSL_2009_367_a12,
     author = {M. N. Yakovlev},
     title = {A bound for the error of the {Ritz} method in the case of the {Lidstone} problem for a~singular differential equation of fourth order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {367},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 195
EP  - 201
VL  - 367
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/
LA  - ru
ID  - ZNSL_2009_367_a12
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 195-201
%V 367
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/
%G ru
%F ZNSL_2009_367_a12
M. N. Yakovlev. A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 195-201. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/