A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 195-201
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Lidstone boundary-value problem
$$
u^{(4)}+q(t)\,u=f(t),\quad01,
$$
$$
u(0)=u''(0)=u(1)=u''(1)=0
$$
conditions of solvability are obtained for nonintegrable functions $q(t)$ and $f(t)$, and a computable error bound for the Ritz method is established. Bibl. – 3 titles.
@article{ZNSL_2009_367_a12,
author = {M. N. Yakovlev},
title = {A bound for the error of the {Ritz} method in the case of the {Lidstone} problem for a~singular differential equation of fourth order},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--201},
publisher = {mathdoc},
volume = {367},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/}
}
TY - JOUR AU - M. N. Yakovlev TI - A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 195 EP - 201 VL - 367 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/ LA - ru ID - ZNSL_2009_367_a12 ER -
%0 Journal Article %A M. N. Yakovlev %T A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order %J Zapiski Nauchnykh Seminarov POMI %D 2009 %P 195-201 %V 367 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/ %G ru %F ZNSL_2009_367_a12
M. N. Yakovlev. A bound for the error of the Ritz method in the case of the Lidstone problem for a~singular differential equation of fourth order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 195-201. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a12/