@article{ZNSL_2009_367_a1,
author = {Yu. K. Demjanovich and O. M. Kosogorov},
title = {Splines and biorthogonal systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--26},
year = {2009},
volume = {367},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/}
}
Yu. K. Demjanovich; O. M. Kosogorov. Splines and biorthogonal systems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 9-26. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/
[1] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR | Zbl
[2] G. Mühlbach, “ECT-B-splines defined by generalized divided differences”, J. Comput. Appl. Math., 187 (2006), 96–122 | DOI | MR | Zbl
[3] A. Aldroubi, Q. Sun, W.-S. Tang, “Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces”, Constr. Approx., 20 (2004), 173–189 | DOI | MR | Zbl
[4] S. Malla, Veivlety v obrabotke signalov, M., 2005
[5] Yu. K. Demyanovich, Vspleski i minimalnye splainy, SPb., 2003
[6] Yu. K. Demyanovich, “Vspleskovye (veivletnye) razlozheniya na neravnomernoi setke”, Trudy SPbMO, 13, 2007, 27–51
[7] Yu. K. Demyanovich, “Minimalnye splainy i vspleski”, Vestnik SPbGU, 2008, no. 2, 8–22 | Zbl