Splines and biorthogonal systems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 9-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper constructs coordinate splines on a closed interval, provides realizations of the corresponding biorthogonal system, and constructs finite-dimensional spaces of splines (nonpolynomial in general) of the class $C^1$. Bibl. – 7 titles.
@article{ZNSL_2009_367_a1,
     author = {Yu. K. Demjanovich and O. M. Kosogorov},
     title = {Splines and biorthogonal systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--26},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/}
}
TY  - JOUR
AU  - Yu. K. Demjanovich
AU  - O. M. Kosogorov
TI  - Splines and biorthogonal systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 9
EP  - 26
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/
LA  - ru
ID  - ZNSL_2009_367_a1
ER  - 
%0 Journal Article
%A Yu. K. Demjanovich
%A O. M. Kosogorov
%T Splines and biorthogonal systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 9-26
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/
%G ru
%F ZNSL_2009_367_a1
Yu. K. Demjanovich; O. M. Kosogorov. Splines and biorthogonal systems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 9-26. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a1/

[1] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR | Zbl

[2] G. Mühlbach, “ECT-B-splines defined by generalized divided differences”, J. Comput. Appl. Math., 187 (2006), 96–122 | DOI | MR | Zbl

[3] A. Aldroubi, Q. Sun, W.-S. Tang, “Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces”, Constr. Approx., 20 (2004), 173–189 | DOI | MR | Zbl

[4] S. Malla, Veivlety v obrabotke signalov, M., 2005

[5] Yu. K. Demyanovich, Vspleski i minimalnye splainy, SPb., 2003

[6] Yu. K. Demyanovich, “Vspleskovye (veivletnye) razlozheniya na neravnomernoi setke”, Trudy SPbMO, 13, 2007, 27–51

[7] Yu. K. Demyanovich, “Minimalnye splainy i vspleski”, Vestnik SPbGU, 2008, no. 2, 8–22 | Zbl