A formula for the Perron vector of a stochastic matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 5-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests a new linear-algebraic proof of a formula for the Perron vector (stationary distribution) of a stochastic matrix, known in the theory of Markov chains. Bibl. – 5 titles.
@article{ZNSL_2009_367_a0,
     author = {Yu. A. Al'pin},
     title = {A formula for the {Perron} vector of a~stochastic matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--8},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a0/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
TI  - A formula for the Perron vector of a stochastic matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 8
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a0/
LA  - ru
ID  - ZNSL_2009_367_a0
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%T A formula for the Perron vector of a stochastic matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-8
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a0/
%G ru
%F ZNSL_2009_367_a0
Yu. A. Al'pin. A formula for the Perron vector of a stochastic matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a0/

[1] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, M., 1949

[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[3] P. Lankaster, Teoriya matrits, Nauka, M., 1978 | MR

[4] A. N. Shiryaev, Veroyatnost–1, MTsNMO, M., 2004

[5] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR