Uniformly spread measures and vector fields
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 116-127

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that two different ideas of uniform spreading of locally finite measures on the $d$-dimensional Euclidean space are equivalent. The first idea is formulated in terms of finite distance transportations to the Lebesgue measure, while the second idea is formulated in terms of vector fields connecting a given measure with the Lebesgue measure. Bibl. – 11 titles.
@article{ZNSL_2009_366_a7,
     author = {M. Sodin and B. Tsirelson},
     title = {Uniformly spread measures and vector fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--127},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/}
}
TY  - JOUR
AU  - M. Sodin
AU  - B. Tsirelson
TI  - Uniformly spread measures and vector fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 116
EP  - 127
VL  - 366
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/
LA  - en
ID  - ZNSL_2009_366_a7
ER  - 
%0 Journal Article
%A M. Sodin
%A B. Tsirelson
%T Uniformly spread measures and vector fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 116-127
%V 366
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/
%G en
%F ZNSL_2009_366_a7
M. Sodin; B. Tsirelson. Uniformly spread measures and vector fields. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/