@article{ZNSL_2009_366_a7,
author = {M. Sodin and B. Tsirelson},
title = {Uniformly spread measures and vector fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--127},
year = {2009},
volume = {366},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/}
}
M. Sodin; B. Tsirelson. Uniformly spread measures and vector fields. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/
[1] T. Ganelius, “Some applications of a lemma on Fourier series”, Acad. Serbe Sci. Publ. Inst. Math., 11 (1957), 9–18 | MR | Zbl
[2] I. M. Gelfand, N. Ya. Vilenkin, Generalized functions. Vol. 4. Applications of harmonic analysis, Izdat. Fiz.-Mat. Lit., Moscow, 1961 | MR
[3] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1999 | MR | Zbl
[4] W. Hayman, P. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976 | MR | Zbl
[5] L. V. Kantorovich, G. P. Akilov, Functional analysis in normed spaces, 3rd edition, Nauka, Moscow, 1984 | MR | Zbl
[6] H. G. Kellerer, “Duality theorems for marginal problems”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 67:4 (1984), 399–432 | DOI | MR | Zbl
[7] M. Laczkovich, “Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem”, J. Reine Angew. Math., 404 (1990), 77–117 | DOI | MR | Zbl
[8] M. Laczkovich, “Uniformly spread discrete sets in $R^d$”, J. London Math. Soc. (2), 46 (1992), 39–57 | DOI | MR | Zbl
[9] M. Sodin, B. Tsirelson, “Random complex zeroes, II. Perturbed lattice”, Israel J. Math., 152 (2006), 105–124 | DOI | MR | Zbl
[10] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36 (1965), 423–439 | DOI | MR | Zbl
[11] V. N. Sudakov, “The existence of probability measure with specified projections”, Mat. Zametki, 14:4 (1973), 573–576 | MR | Zbl