Uniformly spread measures and vector fields
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 116-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that two different ideas of uniform spreading of locally finite measures on the $d$-dimensional Euclidean space are equivalent. The first idea is formulated in terms of finite distance transportations to the Lebesgue measure, while the second idea is formulated in terms of vector fields connecting a given measure with the Lebesgue measure. Bibl. – 11 titles.
@article{ZNSL_2009_366_a7,
     author = {M. Sodin and B. Tsirelson},
     title = {Uniformly spread measures and vector fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--127},
     year = {2009},
     volume = {366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/}
}
TY  - JOUR
AU  - M. Sodin
AU  - B. Tsirelson
TI  - Uniformly spread measures and vector fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 116
EP  - 127
VL  - 366
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/
LA  - en
ID  - ZNSL_2009_366_a7
ER  - 
%0 Journal Article
%A M. Sodin
%A B. Tsirelson
%T Uniformly spread measures and vector fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 116-127
%V 366
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/
%G en
%F ZNSL_2009_366_a7
M. Sodin; B. Tsirelson. Uniformly spread measures and vector fields. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a7/

[1] T. Ganelius, “Some applications of a lemma on Fourier series”, Acad. Serbe Sci. Publ. Inst. Math., 11 (1957), 9–18 | MR | Zbl

[2] I. M. Gelfand, N. Ya. Vilenkin, Generalized functions. Vol. 4. Applications of harmonic analysis, Izdat. Fiz.-Mat. Lit., Moscow, 1961 | MR

[3] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1999 | MR | Zbl

[4] W. Hayman, P. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976 | MR | Zbl

[5] L. V. Kantorovich, G. P. Akilov, Functional analysis in normed spaces, 3rd edition, Nauka, Moscow, 1984 | MR | Zbl

[6] H. G. Kellerer, “Duality theorems for marginal problems”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 67:4 (1984), 399–432 | DOI | MR | Zbl

[7] M. Laczkovich, “Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem”, J. Reine Angew. Math., 404 (1990), 77–117 | DOI | MR | Zbl

[8] M. Laczkovich, “Uniformly spread discrete sets in $R^d$”, J. London Math. Soc. (2), 46 (1992), 39–57 | DOI | MR | Zbl

[9] M. Sodin, B. Tsirelson, “Random complex zeroes, II. Perturbed lattice”, Israel J. Math., 152 (2006), 105–124 | DOI | MR | Zbl

[10] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36 (1965), 423–439 | DOI | MR | Zbl

[11] V. N. Sudakov, “The existence of probability measure with specified projections”, Mat. Zametki, 14:4 (1973), 573–576 | MR | Zbl