Two remarks on the relationship between BMO-regularity and analytic stability of interpolation for lattices of measurable functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 102-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The subject-matter of this paper is Hardy type spaces on the measure space $(\mathbb T,m)\times(\Omega,\mu)$, where $(\mathbb T,m)$ is the unit circle with Lebesgue measure. There is a characterization of analytic stability for real interpolation of weighted Hardy spaces on $\mathbb T\times\Omega$ a complete proof of which was present in the literature only for the case where $\mu$ is a point mass. Here this gap is filled and the proof of the general case is presented. Next, in previous work by S. Kislyakov, certain results concerning BMO-regular lattices on $(\mathbb T\times\Omega,m\times\mu)$ were proved under the assumption that the measure $\mu$ is discrete. Here this extraneous assumption is lifted. Bibl. – 9 titles.
@article{ZNSL_2009_366_a6,
     author = {D. V. Rutsky},
     title = {Two remarks on the relationship between {BMO-regularity} and analytic stability of interpolation for lattices of measurable functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--115},
     year = {2009},
     volume = {366},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a6/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Two remarks on the relationship between BMO-regularity and analytic stability of interpolation for lattices of measurable functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 102
EP  - 115
VL  - 366
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a6/
LA  - ru
ID  - ZNSL_2009_366_a6
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Two remarks on the relationship between BMO-regularity and analytic stability of interpolation for lattices of measurable functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 102-115
%V 366
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a6/
%G ru
%F ZNSL_2009_366_a6
D. V. Rutsky. Two remarks on the relationship between BMO-regularity and analytic stability of interpolation for lattices of measurable functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 102-115. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a6/

[1] M. Cwikel, J. E. McCarthy, T. H. Wolff, “Interpolation between weighted Hardy spaces”, Proc. Am. Math. Soc., 116:2, 381–388 | DOI | MR

[2] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981 | MR | Zbl

[3] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 1976 | MR | Zbl

[4] S. V. Kisliakov, “Interpolation of $H_p$-spaces: some recent developments”, Function spaces, interpolation spaces, and related topics (Haifa, 1995), Israel Math. Conf. Proceedings, 13, Bar-Ilan Univ., 1999, 102–140 | MR | Zbl

[5] S. V. Kisliakov, Xu Quanhua, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Am. Mat. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[6] S. V. Kislyakov, “O BMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl

[7] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Studia Mathematica, 159:2 (2003), 277–289 | DOI | MR

[8] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, Moskva, 1950

[9] S. V .Kislyakov, “O BMO-regulyarnykh reshetkakh izmerimykh funktsii. II”, Zapiski nauchn. semin. POMI, 303(31), 2003, 161–168 | MR