On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 67-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $B$ is a subset of integers that possesses certain arithmetic properties. Estimates of the best approximation of functions in the space $L_p$, $0$, by trigonometric polynomials that are constructed by the system $\{e^{ikx}\}_{k\in\mathbb Z\setminus B}$ are obtained. Bibl. – 13 titles.
@article{ZNSL_2009_366_a4,
     author = {Yu. S. Kolomoitsev},
     title = {On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0<p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a4/}
}
TY  - JOUR
AU  - Yu. S. Kolomoitsev
TI  - On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 67
EP  - 83
VL  - 366
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a4/
LA  - ru
ID  - ZNSL_2009_366_a4
ER  - 
%0 Journal Article
%A Yu. S. Kolomoitsev
%T On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 67-83
%V 366
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a4/
%G ru
%F ZNSL_2009_366_a4
Yu. S. Kolomoitsev. On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0