On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 67-83
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose $B$ is a subset of integers that possesses certain arithmetic properties. Estimates of the best approximation of functions in the space $L_p$, $0$, by trigonometric polynomials that are constructed by the system $\{e^{ikx}\}_{k\in\mathbb Z\setminus B}$ are obtained. Bibl. – 13 titles.
			
            
            
            
          
        
      @article{ZNSL_2009_366_a4,
     author = {Yu. S. Kolomoitsev},
     title = {On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0<p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a4/}
}
                      
                      
                    TY - JOUR AU - Yu. S. Kolomoitsev TI - On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0 JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 67 EP - 83 VL - 366 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a4/ LA - ru ID - ZNSL_2009_366_a4 ER -
Yu. S. Kolomoitsev. On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, $0