Tests for exponential decay of eigenfunctions for some classes of integral operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate conditions sufficient for an exponential decay of eigenfunctions in the case of a certain class of integral equations in unbounded domains in $\mathbb R^n$. The integral operators $K$ in question have kernels of the form $$ k(x,y)=\frac{c(x,y)}{|x-y|^\beta}\,e^{-\alpha|x-y|},\qquad x,y\in\Omega\subset\mathbb R^n, $$ where $\alpha>0$, $0\leq\beta, $c(x,y)\in L_\infty(\Omega\times\Omega)$. It is shown that, if the operator $T=I-K$ is Fredholm, then all solutions of the equation $\varphi=K\varphi$ have exponential decay at infinity. Applications to Wiener–Hopf operators with oscillating coefficient and some classes of convolution operators with variable coefficients are considered. Bibl. – 14 titles.
@article{ZNSL_2009_366_a3,
     author = {V. M. Kaplitsky},
     title = {Tests for exponential decay of eigenfunctions for some classes of integral operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--66},
     year = {2009},
     volume = {366},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/}
}
TY  - JOUR
AU  - V. M. Kaplitsky
TI  - Tests for exponential decay of eigenfunctions for some classes of integral operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 53
EP  - 66
VL  - 366
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/
LA  - ru
ID  - ZNSL_2009_366_a3
ER  - 
%0 Journal Article
%A V. M. Kaplitsky
%T Tests for exponential decay of eigenfunctions for some classes of integral operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 53-66
%V 366
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/
%G ru
%F ZNSL_2009_366_a3
V. M. Kaplitsky. Tests for exponential decay of eigenfunctions for some classes of integral operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. IV. Analiz operatorov, Mir, M., 1982 | MR

[2] E. E. Shnol, “O povedenii sobstvennykh funktsii uravneniya Shrëdingera”, Matem. sb., 42(84):3 (1957), 273–286 | MR | Zbl

[3] S. Agmon, Lectures on Exponential Decay of Solution of Second-Order Elliptic Equation, Princeton University Press, 1982 | MR | Zbl

[4] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[5] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, 1971 | MR

[6] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2(74) (1957), 43–118 | MR | Zbl

[7] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svërtkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[8] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, DAN SSSR, 78:4 (1951), 629–632 | Zbl

[9] W. Young, “The determination of the summability of a function”, Proc. London Math. Soc., 12 (1913), 71–78 | DOI

[10] N. K. Karapetyants, S. G. Samko, Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd. Rostovskogo universiteta, 1988 | MR | Zbl

[11] G. S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Kluwer Academic Publishers, 2000 | MR | Zbl

[12] V. G. Kravchenko, G. S. Litvinchuk, Introduction to the theory of singular integral operators with shift, Kluwer Academic Publishers, 1994 | MR | Zbl

[13] I. B. Simonenko, “K voprosu razreshimosti bisingulyarnykh i polisingulyarnykh uravnenii”, Izv. vuzov. mat., 1974, no. 2, 115–120 | MR | Zbl

[14] I. B. Simonenko, “Operatory tipa svërtki v konusakh”, Matem. sb., 74(116):2 (1967), 298–313 | MR | Zbl