Tests for exponential decay of eigenfunctions for some classes of integral operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate conditions sufficient for an exponential decay of eigenfunctions in the case of a certain class of integral equations in unbounded domains in $\mathbb R^n$. The integral operators $K$ in question have kernels of the form $$ k(x,y)=\frac{c(x,y)}{|x-y|^\beta}\,e^{-\alpha|x-y|},\qquad x,y\in\Omega\subset\mathbb R^n, $$ where $\alpha>0$, $0\leq\beta$, $c(x,y)\in L_\infty(\Omega\times\Omega)$. It is shown that, if the operator $T=I-K$ is Fredholm, then all solutions of the equation $\varphi=K\varphi$ have exponential decay at infinity. Applications to Wiener–Hopf operators with oscillating coefficient and some classes of convolution operators with variable coefficients are considered. Bibl. – 14 titles.
@article{ZNSL_2009_366_a3,
     author = {V. M. Kaplitsky},
     title = {Tests for exponential decay of eigenfunctions for some classes of integral operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/}
}
TY  - JOUR
AU  - V. M. Kaplitsky
TI  - Tests for exponential decay of eigenfunctions for some classes of integral operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 53
EP  - 66
VL  - 366
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/
LA  - ru
ID  - ZNSL_2009_366_a3
ER  - 
%0 Journal Article
%A V. M. Kaplitsky
%T Tests for exponential decay of eigenfunctions for some classes of integral operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 53-66
%V 366
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/
%G ru
%F ZNSL_2009_366_a3
V. M. Kaplitsky. Tests for exponential decay of eigenfunctions for some classes of integral operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/