Tests for exponential decay of eigenfunctions for some classes of integral operators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate conditions sufficient for an exponential decay of eigenfunctions in the case of a certain class of integral equations in unbounded domains in $\mathbb R^n$. The integral operators $K$ in question have kernels of the form 
$$
k(x,y)=\frac{c(x,y)}{|x-y|^\beta}\,e^{-\alpha|x-y|},\qquad x,y\in\Omega\subset\mathbb R^n,
$$
where $\alpha>0$, $0\leq\beta$, $c(x,y)\in L_\infty(\Omega\times\Omega)$. It is shown that, if the operator $T=I-K$ is Fredholm, then all solutions of the equation $\varphi=K\varphi$ have exponential decay at infinity. Applications to Wiener–Hopf operators with oscillating coefficient and some classes of convolution operators with variable coefficients are considered. Bibl. – 14 titles.
			
            
            
            
          
        
      @article{ZNSL_2009_366_a3,
     author = {V. M. Kaplitsky},
     title = {Tests for exponential decay of eigenfunctions for some classes of integral operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/}
}
                      
                      
                    V. M. Kaplitsky. Tests for exponential decay of eigenfunctions for some classes of integral operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a3/