Approximation in $L^p(\mathbb R^d)$, $0$, by linear combinations of the characteristic functions of balls
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 37, Tome 366 (2009), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the translates of the characteristic function of a ball span $L^p(\mathbb R^d)$ provided $0$ and $d\ge2$. Similar approximation problems are considered for some other functions. Bibl. – 5 titles.
@article{ZNSL_2009_366_a0,
     author = {A. B. Aleksandrov},
     title = {Approximation in $L^p(\mathbb R^d)$, $0<p<1$, by linear combinations of the characteristic functions of balls},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {366},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Approximation in $L^p(\mathbb R^d)$, $0
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 12
VL  - 366
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a0/
LA  - ru
ID  - ZNSL_2009_366_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Approximation in $L^p(\mathbb R^d)$, $0
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-12
%V 366
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_366_a0/
%G ru
%F ZNSL_2009_366_a0
A. B. Aleksandrov. Approximation in $L^p(\mathbb R^d)$, $0