Embedding problem with nonabelian kernel for local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 172-181
Cet article a éte moissonné depuis la source Math-Net.Ru
The embedding problem of local fields with $p$-group is equivalent to its associated Abelian problem if the inequality $d\ge r+3$, where $d$ and $r$ are the numbers of generators of the Demushkin group and the Galois group of an embedded field, is valid. Bibl. – 6 titles.
@article{ZNSL_2009_365_a8,
author = {V. V. Ishkhanov and B. B. Lur'e},
title = {Embedding problem with nonabelian kernel for local fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--181},
year = {2009},
volume = {365},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a8/}
}
V. V. Ishkhanov; B. B. Lur'e. Embedding problem with nonabelian kernel for local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 172-181. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a8/
[1] S. P. Demushkin, I. R. Shafarevich, “Zadacha pogruzheniya dlya lokalnykh polei”, Izv. AN SSSR. Ser. mat., 23:6 (1959), 823–840 | MR | Zbl
[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl
[3] B. B. Lure, “Zadacha pogruzheniya lokalnykh polei s neabelevym yadrom”, Zap. nauchn. semin. LOMI, 31, 1973, 106–114 | MR | Zbl
[4] Kh. Kokh, Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR
[5] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR | Zbl
[6] S. P. Demushkin, “Gruppa maksimalnogo $p$-rasshireniya lokalnogo polya”, Izv. AN SSSR. Ser. mat., 25:3 (1961), 329–346 | MR | Zbl