Abnormal subgroups of classical groups corresponding to closed sets of roots
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 151-171
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we classify abnornal subgroups in classical Chevalley groups, containing split maximal torus. Classification problem is reduced to a combinatorial problem in terms of root systems, which is solved with use of weight graphs. Bibl. – 5 titles.
@article{ZNSL_2009_365_a7,
author = {N. V. Gravin and D. Yu. Shiryaev},
title = {Abnormal subgroups of classical groups corresponding to closed sets of roots},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--171},
year = {2009},
volume = {365},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a7/}
}
N. V. Gravin; D. Yu. Shiryaev. Abnormal subgroups of classical groups corresponding to closed sets of roots. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 151-171. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a7/
[1] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Groups of Lie type and their geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl
[2] F. M. Malyshev, “O zamknutykh podmnozhestvakh kornei i kogomologiyakh regulyarnykh podalgebr”, Mat. sb., 104(146):1(9) (1977), 140–150 | MR | Zbl
[3] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[4] E. A. Sopkina, “O summe kornei zamknutogo mnozhestva”, Zap. nauchn. semin. POMI, 289, 2002, 277–286 | MR | Zbl
[5] D. Z. Djokovic, P. Check, J.-Y. Hee, “On closed subsets of root systems”, Canad. Math. Bull., 37:3 (1994), 338–345 | DOI | MR | Zbl