Hochschild cohomology for self-injective algebras of tree class $D_n$. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 63-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The minimal projective bimodule resolution for certain family of representation-finite self-injective algebras of tree class $D_n$ is constructed. Dimensions of the groups of Hochschild cohomology for the algebras under consideration are calculated by the instrumentality of this resolution. The constructed resolution is periodic and accordingly the Hochschild cohomology for these algebras are periodic too. Bibl. – 12 titles.
@article{ZNSL_2009_365_a3,
     author = {Yu. V. Volkov},
     title = {Hochschild cohomology for self-injective algebras of tree class~$D_n${.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--121},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a3/}
}
TY  - JOUR
AU  - Yu. V. Volkov
TI  - Hochschild cohomology for self-injective algebras of tree class $D_n$. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 63
EP  - 121
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a3/
LA  - ru
ID  - ZNSL_2009_365_a3
ER  - 
%0 Journal Article
%A Yu. V. Volkov
%T Hochschild cohomology for self-injective algebras of tree class $D_n$. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 63-121
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a3/
%G ru
%F ZNSL_2009_365_a3
Yu. V. Volkov. Hochschild cohomology for self-injective algebras of tree class $D_n$. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 63-121. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a3/

[1] C. Riedtmann, “Algebren, Darstellungsköcher, Überlagerungen und zurück”, Comment. Math. Helv., 55 (1980), 199–224 | DOI | MR | Zbl

[2] C. Riedtmann, “Representation-finite self-injective algebras of class $A_n$”, Lect. Notes Math., 832, 1980, 449–520 | DOI | MR | Zbl

[3] K. Erdmann, T. Holm, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$”, Forum Math., 11 (1999), 177–201 | DOI | MR | Zbl

[4] K. Erdmann, T. Holm, N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$. II”, Algebras and Repr. Theory, 5 (2002), 457–482 | DOI | MR | Zbl

[5] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mëbiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl

[6] M. A. Kachalova, “Kogomologii Khokhshilda algebry Mëbiusa”, Zap. nauchn. semin. POMI, 330, 2006, 173–200 | MR | Zbl

[7] Yu. V. Volkov, “Klassy stabilnoi ekvivalentnosti samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Vestnik S.-Pb. un-ta. Ser. 1. Mat., mekh., astr., 2008, no. 1, 15–21 | Zbl

[8] Yu. V. Volkov, A. I. Generalov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. I”, Zap. nauchn. semin. POMI, 343, 2007, 121–182 | MR

[9] D. Happel, “Hochschild cohomology of finite-dimensional algebras”, Lect. Notes Math., 1404, 1989, 108–126 | DOI | MR | Zbl

[10] M. J. Bardzell, “The alternating syzygy behavior of monomial algebras”, J. Algebra, 188 (1997), 69–89 | DOI | MR | Zbl

[11] K. Erdmann, A. Skowronski, “Periodic algebras”, Trends in Representation Theory and Related Topics, European Math. Soc., Zurich, 2008, 201–251 | DOI | MR | Zbl

[12] A. S. Dugas, Periodic resolutions and self-injective algebras of finite type, Preprint, 2008 | MR