Decomposition of transvections for automorphisms
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 47-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of decomposition of unipotents consists in writing elementary matrices as products of factors lying in proper parabolic subgroups, whose images under (abstract) inner automorphisms also fall into proper parabolic subgroups of certain types. For the general linear group, this method was first proposed by Stepanov in 1987 to simplify the proof of Suslin's normality theorem. Soon thereafter Vavilov and Plotkin generalised it to other classical groups and Chevalley groups. Subsequently, many further results of that type have been discovered. In the present paper, we show that a similar decomposition can be constructed for arbitrary standard automorphisms. This result emerged in the context of a simplified proof of the theorems due to Waterhouse, Golubchik, Mikhalev, Zelmanov, and Petechuk regarding the standard description of automorphisms of the general linear group, based exclusively on the use of unipotent elements. Bibl. – 27 titles.
@article{ZNSL_2009_365_a2,
     author = {N. A. Vavilov and V. G. Kazakevich},
     title = {Decomposition of transvections for automorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--62},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - V. G. Kazakevich
TI  - Decomposition of transvections for automorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 47
EP  - 62
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a2/
LA  - ru
ID  - ZNSL_2009_365_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A V. G. Kazakevich
%T Decomposition of transvections for automorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 47-62
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a2/
%G ru
%F ZNSL_2009_365_a2
N. A. Vavilov; V. G. Kazakevich. Decomposition of transvections for automorphisms. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 47-62. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a2/

[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. diss., Leningr. Gos. Un-t, 1987, 334 pp.

[3] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[4] N. A. Vavilov, V. G. Kazakevich, “Esche odna variatsiya na temu razlozheniya transvektsii”, Vestn. SPbGU. Ser. 1, 2008, no. 4, 71–74 | Zbl

[5] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR

[6] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. SPbGU. Ser. 1, 2008, no. 1, 9–14 | MR | Zbl

[7] N. A. Vavilov, A. V. Stepanov, “Lineinye gruppy nad obschimi koltsami”, Vestn. Samarskogo un-ta. Estestvennonauchnaya ser. (to appear)

[8] I. Z. Golubchik, “Izomorfizmy proektivnykh grupp nad assotsiativnymi koltsami”, Fundam. prikl. Mat., 1:1 (1995), 311–314 | MR | Zbl

[9] I. Z. Golubchik, A. V. Mikhalev, “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1, 1983, no. 3, 61–72 | MR | Zbl

[10] E. I. Zelmanov, “Izomorfizmy polnykh lineinykh grupp nad assotsiativnymi koltsami”, Sib. Mat. Zhurn., 26:4 (1985), 49–67 | MR | Zbl

[11] V. M. Petechuk, “Avtomorfizmy matrichnykh grupp nad kommutativnymi koltsami”, Mat. Sb., 117(159):4 (1982), 534–547 | MR | Zbl

[12] V. M. Petechuk, “Gomomorfizmy lineinykh grupp nad kommutativnymi koltsami”, Mat. zametki, 46:5 (1989), 50–61 | MR | Zbl

[13] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. diss., LGU, 1987, 112 pp.

[14] A. Bak, “Nonabelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[15] A. Bak, R. Hazrat, N. Vavilov, “Structure of hyperbolic unitary groups. II. Normal subgroups”, Algebra Colloq., 36:2 (2008), 381–387 | MR

[16] E. I. Bunina, Automorphisms of adjoint Chevalley groups of types $\mathrm A_l$, $\mathrm D_l$, $\mathrm E_l$ over local rings, , 2007, 20 pp. arXiv: math/0702046

[17] I. Z. Golubchik, “Isomorphisms of the general linear group $\mathrm{GL}_n(R)$, $n\ge4$, over an associative ring”, Contemp. Math., 131:1 (1992), 123–136 | DOI | MR | Zbl

[18] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[19] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[20] A. Klyachko, Automorphisms and isomorphisms of Chevalley groups and algebras, , 2007, 8 pp. arXiv: 0708.2256v2[math.GR] | MR

[21] A. Stepanov, “Subring subgroups in symplectic and odd orthogonal group”, 2008 (to appear) , 10 pp.

[22] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[23] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[24] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Rend. Sem. Mat. Univ. Padova, 204:1 (2000), 201–250 | MR

[25] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[26] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR

[27] W. C. Waterhouse, “Automorphisms of $\mathrm{GL}_n(R)$”, Proc. Amer. Math. Soc., 79 (1980), 347–351 | DOI | MR | Zbl