Weierstrass preparational theorem for noncommutative rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 254-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A power series over complete local ring can be canonically decomposed into product of an invertible power series and an unital polynomial, which degree coincides with the number of first invertible coefficient. This statement is known as Weierstrass preparation theorem. It follows from a more general statement, known as Weierstrass division theorem. The given article contains a detailed proof of generalizations of Weierstrass preparation theorem and Weierstrass division theorem for so-called rings of skew power series. Such rings arise in number theory, at first, in studies of formal groups over local fields. Bibl. – 3 titles.
@article{ZNSL_2009_365_a14,
     author = {E. V. Ferens-Sorotskiy},
     title = {Weierstrass preparational theorem for noncommutative rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--261},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a14/}
}
TY  - JOUR
AU  - E. V. Ferens-Sorotskiy
TI  - Weierstrass preparational theorem for noncommutative rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 254
EP  - 261
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a14/
LA  - ru
ID  - ZNSL_2009_365_a14
ER  - 
%0 Journal Article
%A E. V. Ferens-Sorotskiy
%T Weierstrass preparational theorem for noncommutative rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 254-261
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a14/
%G ru
%F ZNSL_2009_365_a14
E. V. Ferens-Sorotskiy. Weierstrass preparational theorem for noncommutative rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 254-261. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a14/

[1] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, t. 2, M., 1963

[2] Yu. I. Manin, “Krugovye polya i modulyarnye krivye”, Usp. mat. nauk, 26:6 (1971), 7–71 | MR | Zbl

[3] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR