On construction of formal groups with a given distinguished homomorphism
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 236-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known from Lubin–Tate theory that a Lubin–Tate formal group can be constructed by its distinguished isogeny, which can be taken to be an arbitrary power series (with a few restrictions). Analogous statement is also known for Honda formal groups. In the given article similar statement is proved in detail for $p$-typical formal groups in so-called small ramification case. It is also proved that a distinguished homomorphism, in general, can not be taken to be a polynomial. Bibl. – 6 titles.
@article{ZNSL_2009_365_a13,
     author = {E. V. Ferens-Sorotskiy},
     title = {On construction of formal groups with a~given distinguished homomorphism},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--253},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a13/}
}
TY  - JOUR
AU  - E. V. Ferens-Sorotskiy
TI  - On construction of formal groups with a given distinguished homomorphism
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 236
EP  - 253
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a13/
LA  - ru
ID  - ZNSL_2009_365_a13
ER  - 
%0 Journal Article
%A E. V. Ferens-Sorotskiy
%T On construction of formal groups with a given distinguished homomorphism
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 236-253
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a13/
%G ru
%F ZNSL_2009_365_a13
E. V. Ferens-Sorotskiy. On construction of formal groups with a given distinguished homomorphism. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 236-253. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a13/

[1] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math. (2), 81 (1965), 380–387 | DOI | MR | Zbl

[2] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York, 1978 | MR | Zbl

[3] O. V. Demchenko, “Novye sootnosheniya mezhdu formalnymi gruppami Lyubina–Teita i formalnymi gruppami Khondy”, Algebra i analiz, 10:5 (1998), 77–84 | MR | Zbl

[4] E. de Shalit, “Relative Lubin-Tate groups”, Proc. Amer. Math. Soc., 95 (1985), 1–4 | DOI | MR | Zbl

[5] I. Fesenko, S. V. Vostokov, Local Fields and Their Extensions: A Constructive Approach, Translations of Mathematical Monographs, 121, AMS, 1993 | MR | Zbl

[6] M. V. Bondarko, S. V. Vostokov, “Yavnaya klassifikatsiya formalnykh grupp nad lokalnymi polyami”, Trudy Matematicheskogo Instituta imeni V. A. Steklova, 241, 2003, 43–67 | MR | Zbl