Binary projective space
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 208-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A study of a generalized projective scheme closely related to the binary projective space $\mathbf P^{(2)}=\operatorname{Proj}\mathbb F_0[t]$, where $t$ is a free binary variable, is started. In particular, the global sections of the structure sheaf on elements of certain affine covering are computed and the scheme point of the unary version are described. Bibl. – 4 titles.
@article{ZNSL_2009_365_a11,
     author = {A. L. Smirnov},
     title = {Binary projective space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--224},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a11/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Binary projective space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 208
EP  - 224
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a11/
LA  - ru
ID  - ZNSL_2009_365_a11
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Binary projective space
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 208-224
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a11/
%G ru
%F ZNSL_2009_365_a11
A. L. Smirnov. Binary projective space. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 208-224. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a11/

[1] N. Durov, New Approach to Arakelov Geometry, , 16 Apr. 2007 arXiv: 0704.2030v1[math.AG] | Zbl

[2] A. L. Smirnov, “Graduirovannye monady i koltsa polinomov”, Zap. nauchn. semin. POMI, 349, 2007, 174–210 | MR

[3] G. Polia, G. Sege, Zadachi i teoremy iz analiza, Nauka, M., 1978 | MR

[4] A. L. Smirnov, “Odna zadacha vypukloi tselochislennoi interpolyatsii”, Zap. nauchn. semin. POMI, 365, 2009, 225–235 | MR | Zbl