On another proof for B.~Sury's theorem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207
Voir la notice de l'article provenant de la source Math-Net.Ru
For a central simple algebra $A$ over a global field with an involution of second kind $\tau$ we give an explicit description of the group $\mathrm{SU}(A,\tau)/[U(A,\tau),U(A,\tau)]$. It is another proof for B. Sury's theorem. Bibl. – 11 titles.
@article{ZNSL_2009_365_a10,
author = {A. V. Prokopchuk and V. I. Yanchevskii},
title = {On another proof for {B.~Sury's} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--207},
publisher = {mathdoc},
volume = {365},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/}
}
A. V. Prokopchuk; V. I. Yanchevskii. On another proof for B.~Sury's theorem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/