On another proof for B.~Sury's theorem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207

Voir la notice de l'article provenant de la source Math-Net.Ru

For a central simple algebra $A$ over a global field with an involution of second kind $\tau$ we give an explicit description of the group $\mathrm{SU}(A,\tau)/[U(A,\tau),U(A,\tau)]$. It is another proof for B. Sury's theorem. Bibl. – 11 titles.
@article{ZNSL_2009_365_a10,
     author = {A. V. Prokopchuk and V. I. Yanchevskii},
     title = {On another proof for {B.~Sury's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--207},
     publisher = {mathdoc},
     volume = {365},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/}
}
TY  - JOUR
AU  - A. V. Prokopchuk
AU  - V. I. Yanchevskii
TI  - On another proof for B.~Sury's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 196
EP  - 207
VL  - 365
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/
LA  - ru
ID  - ZNSL_2009_365_a10
ER  - 
%0 Journal Article
%A A. V. Prokopchuk
%A V. I. Yanchevskii
%T On another proof for B.~Sury's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 196-207
%V 365
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/
%G ru
%F ZNSL_2009_365_a10
A. V. Prokopchuk; V. I. Yanchevskii. On another proof for B.~Sury's theorem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/