On another proof for B. Sury's theorem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a central simple algebra $A$ over a global field with an involution of second kind $\tau$ we give an explicit description of the group $\mathrm{SU}(A,\tau)/[U(A,\tau),U(A,\tau)]$. It is another proof for B. Sury's theorem. Bibl. – 11 titles.
@article{ZNSL_2009_365_a10,
     author = {A. V. Prokopchuk and V. I. Yanchevskii},
     title = {On another proof for {B.~Sury's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--207},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/}
}
TY  - JOUR
AU  - A. V. Prokopchuk
AU  - V. I. Yanchevskii
TI  - On another proof for B. Sury's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 196
EP  - 207
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/
LA  - ru
ID  - ZNSL_2009_365_a10
ER  - 
%0 Journal Article
%A A. V. Prokopchuk
%A V. I. Yanchevskii
%T On another proof for B. Sury's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 196-207
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/
%G ru
%F ZNSL_2009_365_a10
A. V. Prokopchuk; V. I. Yanchevskii. On another proof for B. Sury's theorem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 196-207. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a10/

[1] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[2] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72 (1950), 323–334 | DOI | MR | Zbl

[3] V. I. Yanchevskii, “Kommutanty prostykh algebr s syurektivnoi privedennoi normoi”, Dokl. AN SSSR, 221 (1975), 1056–1058 | Zbl

[4] V. P. Platonov, “O probleme Tannaka–Artina”, Dokl. AN SSSR, 221 (1975), 1038–1041 | MR | Zbl

[5] B. A. Sethuraman, B. Sury, “On the special unitary group of a division algebra”, Proc. Amer. Math. Soc., 134 (2005), 351–354 | DOI | MR

[6] B. Sury, “On $SU(1,D)/[U(1,D),U(1,D)]$ for a quaternion division algebra $D$”, Arch. Math., 90 (2008), 493–500 | DOI | MR | Zbl

[7] G. A. Margulis, “O multiplikativnoi gruppe algebry kvaternionov nad globalnym polem”, Dokl. AN SSSR, 252 (1980), 542–546 | MR | Zbl

[8] N. Burbaki, Kommutativnaya algebra, Nauka, M., 1971 | MR

[9] Dzh. Kassels, A. Frëlikh (Red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[10] G. Tomanov, “On Grunwald–Wang's theorem”, J. reine angew. Math., 389 (1988), 209–220 | DOI | MR | Zbl

[11] C. Riehm, “The norm 1 group of $p$-adic division algebras”, Amer. J. Math., 92 (1970), 499–523 | DOI | MR | Zbl