Overgroups of $E(m,R)\otimes E(n,R)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 5-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we study subgroups $E(m,R)\otimes E(n,R)\le H\le G=\operatorname{GL}(mn,R)$, under assumption that the ring $R$ is commutative, and $m,n\ge3$. We define the group $\operatorname{GL}_m\otimes\operatorname{GL}_n$ by equations, calculate the normaliser of the group $E(m,R)\otimes E(n,R)$ and associate to each intermediate subgroup $H$ a uniquely determined lower level $(A,B,C)$, where $A,B,C$ are ideals in $R$ such that $mA,A^2\le B\le A$ and $nA,A^2\le C\le A$. Lower level specifies the largest elementary subgroup such that $E(m,n,R,A,B,C)\le H$. The standard answer to this problem asserts that $H$ is contained in the normaliser $N_G(E(m,n,R,A,B,C))$. Bibl. – 46 titles.
@article{ZNSL_2009_365_a0,
     author = {A. S. Ananievskiy and N. A. Vavilov and S. S. Sinchuk},
     title = {Overgroups of $E(m,R)\otimes E(n,R)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--28},
     year = {2009},
     volume = {365},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a0/}
}
TY  - JOUR
AU  - A. S. Ananievskiy
AU  - N. A. Vavilov
AU  - S. S. Sinchuk
TI  - Overgroups of $E(m,R)\otimes E(n,R)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 28
VL  - 365
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a0/
LA  - ru
ID  - ZNSL_2009_365_a0
ER  - 
%0 Journal Article
%A A. S. Ananievskiy
%A N. A. Vavilov
%A S. S. Sinchuk
%T Overgroups of $E(m,R)\otimes E(n,R)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-28
%V 365
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a0/
%G ru
%F ZNSL_2009_365_a0
A. S. Ananievskiy; N. A. Vavilov; S. S. Sinchuk. Overgroups of $E(m,R)\otimes E(n,R)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 18, Tome 365 (2009), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_2009_365_a0/

[1] A. S. Ananevskii, N. A. Vavilov, S. S. Sinchuk, “O nadgruppakh $E(m,R)\otimes E(n,R)$. I. Urovni i normalizatory” (to appear)

[2] A. S. Ananevskii, N. A. Vavilov, S. S. Sinchuk, “O nadgruppakh $E(m,R)\otimes E(n,R)$. II. Sluchai $n\ge m+2$” (to appear)

[3] Z. I. Borevich, N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad kommutativnym koltsom”, Dokl. AN SSSR, 267:4 (1982), 777–778 | MR | Zbl

[4] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR

[5] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. Diss., Leningr. Gos. Un-t, 1987, 334 pp. | Zbl

[6] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i Analiz, 19:5 (2007), 37–64 | MR

[7] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm F_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[8] N. A. Vavilov, E. Ya. Perelman, “Polivektornoe predstavlenie $\mathrm{GL}_n$”, Zap. nauchn. semin. POMI, 338, 2006, 69–97 | MR | Zbl

[9] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauchn. semin. POMI, 272, 2000, 68–85 | MR | Zbl

[10] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[11] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i Analiz, 19:2 (2007), 10–51 | MR | Zbl

[12] N. A. Vavilov, A. K. Stavrova, “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauchn. semin. POMI, 349, 2007, 30–52 | MR

[13] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta. Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[14] A. I. Korotkevich, “Podgruppy polnoi lineinoi gruppy, soderzhaschie elementarnuyu gruppu v privodimom predstavlenii”, Zap. nauchn. semin. POMI, 272, 2000, 227–233 | MR | Zbl

[15] A. Yu. Luzgarev, “O nadgruppakh $E(\mathrm E_6,R)$ i $E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[16] A. Yu. Luzgarev, “Opisanie nadgrupp $\mathrm F_4$ v $\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185 | MR

[17] A. Yu. Luzgarev, Nadgruppy isklyuchitelnykh grupp, Kand. Diss., SPb Gos. Un-t, 2008, 106 pp.

[18] V. M. Petechuk, “Avtomorfizmy matrichnykh grupp nad kommutativnymi koltsami”, Mat. Sb., 117(159):4 (1982), 534–547 | MR | Zbl

[19] V. M. Petechuk, “Gomomorfizmy lineinykh grupp nad kommutativnymi koltsami”, Mat. zametki, 46:5 (1989), 50–61 | MR | Zbl

[20] V. A. Petrov, Nadgruppy klassicheskikh grupp, Kand. Diss., SPb Gos. Un-t, 2005, 129 pp.

[21] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i Analiz, 20:4 (2008), 160–188 | MR

[22] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. Diss., LGU, 1987, 112 pp.

[23] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 235–252 | MR | Zbl

[24] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[25] A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[26] A. Bak, “Nonabelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[27] A. Bak, R. Hazrat, N. Vavilov, “Structure of hyperbolic unitary groups. II. Normal subgroups”, Algebra Colloquium, 2009 (to appear)

[28] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR | Zbl

[29] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[30] Li Shangzhi, “Overgroups in $\mathrm{GL}(U\otimes W)$ of certain subgroups of $\mathrm{GL}(U)\otimes\mathrm{GL}(W)$. I”, J. Algebra, 137:2 (1991), 338–368 | DOI | MR | Zbl

[31] Li Shangzhi, Overgroups in $\mathrm{GL}(U\otimes W)$ of certain subgroups of $\mathrm{GL}(U)\otimes\mathrm{GL}(W)$. II, Preprint, 1997

[32] Li Shangzhi, $\mathrm{SL}(n,K)_L\otimes\mathrm{SL}(m,K)_R$ over a skewfield $K$, Preprint, 1997

[33] Li Shangzhi, Subgroup structure of classical groups, Shanghai Scientific Technical Publ., Shanghai, 1998 (in Chinese) | MR

[34] V. Petrov, “Overgroups of unitary groups”, $K$-theory, 29 (2003), 147–174 | DOI | MR | Zbl

[35] A. Stepanov, “Nonstandard subgroups between $E_n(R)$ and $\mathrm{GL}_n(A)$”, Algebra Colloquium, 10:3 (2004), 321–334 | MR

[36] A. Stepanov, “Subring subgroups in symplectic and odd orthogonal group”, 2008 (to appear)

[37] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-theory, 19 (2000), 109–153 | DOI | MR | Zbl

[38] F. G. Timmesfeld, “Abstract root subgroups and quadratic actions”, With an appendix by A. E. Zalesskii, Adv. Math., 142:1 (1999), 1–150 | DOI | MR | Zbl

[39] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[40] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | DOI | MR | Zbl

[41] W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, N.Y. et al., 1979 | MR | Zbl

[42] W. C. Waterhouse, “Automorphisms of $\mathrm{GL}_n(R)$”, Proc. Amer. Math. Soc., 79 (1980), 347–351 | DOI | MR | Zbl

[43] W. C. Waterhouse, “Automorphisms of quotients of $\prod\mathrm{GL}(n_i)$”, Pacif. J. Math., 102 (1982), 221–233 | DOI | MR | Zbl

[44] W. C. Waterhouse, “Automorphisms of $\operatorname{det}(X_{ij})$: the group scheme approach”, Adv. Math., 23:3 (1967), 613–620

[45] You Hong, “Overgroups of symplectic group in linear group over commutative rings”, J. Algebra, 282:1 (2004), 23–32 | DOI | MR | Zbl

[46] You Hong, “Overgroups of classical groups over commutative group in linear group”, Sci. China Ser. A, 49:5 (2006), 626–638 | DOI | MR | Zbl