Exact small deviation asymptotics in $L_2$-norm for some weighted Gaussian processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 166-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find the exact small ball asymptotics under weighted $L_2$-norm for a wide class of Gaussian processes generating the boundary value problems for ordinary differential equations. Also the sharp constants in the asymptotics are derived for a number of processes connected with special functions. Bibl. – 23 titles.
@article{ZNSL_2009_364_a7,
     author = {A. I. Nazarov and R. S. Pusev},
     title = {Exact small deviation asymptotics in $L_2$-norm for some weighted {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--199},
     year = {2009},
     volume = {364},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a7/}
}
TY  - JOUR
AU  - A. I. Nazarov
AU  - R. S. Pusev
TI  - Exact small deviation asymptotics in $L_2$-norm for some weighted Gaussian processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 166
EP  - 199
VL  - 364
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a7/
LA  - ru
ID  - ZNSL_2009_364_a7
ER  - 
%0 Journal Article
%A A. I. Nazarov
%A R. S. Pusev
%T Exact small deviation asymptotics in $L_2$-norm for some weighted Gaussian processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 166-199
%V 364
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a7/
%G ru
%F ZNSL_2009_364_a7
A. I. Nazarov; R. S. Pusev. Exact small deviation asymptotics in $L_2$-norm for some weighted Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 166-199. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a7/

[1] W. V. Li, Q. M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Handbook Statist., 19 (2001), 533–597 | DOI | MR | Zbl

[2] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Theor. Math. Stat., Proc. VII Int. Vilnius Conference, 1999, 453–468 | Zbl

[3] G. N. Sytaya, “O nekotorykh asimptoticheskikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 2 (1974), 93–104

[4] V. M. Zolotarev, “Gaussian measure asymptotics in $l_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians, 1979, 254

[5] R. M. Dudley, J. Hoffmann-Jørgensen, L. A. Shepp, “On the lower tail of Gaussian seminorms”, Ann. Probab., 7 (1979), 319–342 | DOI | MR | Zbl

[6] I. A. Ibragimov, “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. nauchn. semin. LOMI, 85, 1979, 75–93 | MR | Zbl

[7] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theor. Probab., 5:1 (1992), 1–31 | DOI | MR

[8] T. Dunker, M. A. Lifshits, W. Linde, “Small deviations of sums of independent variables”, Progr. Probab., 43 (1998), 59–74 | MR | Zbl

[9] J.-R. Pycke, Un lien entre le développement de Karhunen-Loève de certains processus gaussiens et le laplacien dans des espaces de Riemann, Thèse de doctorat de l'Université Paris 6, 2003 | Zbl

[10] A. I. Nazarov, Ya. Yu. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Prob. Theor. Rel. Fields., 129:4 (2004), 469–494 | DOI | MR | Zbl

[11] A. I. Nazarov, “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Problemy matem. analiza, 26 (2003), 179–214

[12] A. I. Nazarov, Tochnaya asimptotika malykh uklonenii gaussovskikh protsessov v $L_2$-norme i spektr kraevykh zadach s neraspadayuschimisya granichnymi usloviyami, SPbMS El. Prepr. Archive No 2007–03, 25 pp.

[13] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Laplace transforms via Hadamard factorization with applications to small ball probabilities”, Electron. J. Probab., 8:13 (2003), 1–20 | MR

[14] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000 | Zbl

[15] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, 6-e izd., Lan, SPb., 2003 | MR

[16] Ya. Yu. Nikitin, P. A. Kharinskii, “Tochnaya asimptotika malykh uklonenii v $L_2$-norme dlya odnogo klassa gaussovskikh protsessov”, Zap. nauchn. semin. POMI, 311, 2004, 214–221 | MR | Zbl

[17] E. Titchmarsh, Teoriya funktsii, 2-e izd., Nauka, M., 1980 | MR | Zbl

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 5-e izd., Nauka, M., 1971

[19] M. L. Kleptsyna, A. Le Breton, “A Cameron-Martin type formula for general Gaussian processes – a filtering approach”, Stochastics Stochastics Rep., 72:3–4 (2002), 229–250 | DOI | MR | Zbl

[20] A. I. Karol, A. I. Nazarov, Ya. Yu. Nikitin, Tensor products of compact operators and logarithmic $L_2$-small ball asymptotics for Gaussian random fields, Studi Statistici, No 74, Università Bocconi, 2003; Trans. AMS (to appear)

[21] P. Deheuvels, G. Martynov, “Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions”, Progr. Probab., 55 (2003), 57–93 | MR | Zbl

[22] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969 | MR | Zbl

[23] A. Lachal, “Bridges of certain Wiener integrals. Prediction properties, relation with polynomial interpolation and differential equations. Application to goodness-of-fit testing”, Bolyai Math. Studies X, Limit Theorems, Balatonlelle (Hungary, 1999), Budapest, 2002, 1–51 | MR