@article{ZNSL_2009_364_a6,
author = {A. Yu. Zaitsev},
title = {The rate of {Gaussian} strong approximation for the sums of i.i.d. multidimensional random vectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--165},
year = {2009},
volume = {364},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a6/}
}
A. Yu. Zaitsev. The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 148-165. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a6/
[1] P. Bártfai, “Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation”, Studia Sci. Math. Hungar., 1 (1966), 161–168 | MR | Zbl
[2] I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 17 (1979), 29–54 | DOI | MR
[3] E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvectoren, Dissertation, Universität Göttingen, 1982
[4] A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18 (1973), 217–234 | MR | Zbl
[5] A. A. Borovkov, A. I. Sakhanenko, “On the rate of convergence in invariance principle”, Lect. Notes Math., 1021, 1981, 59–66 | DOI | MR
[6] A. A. Borovkov, A. I. Sakhanenko, “Skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 | MR | Zbl
[7] L. Breiman, “On the tail behaviour of sums of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9 (1967), 20–24 | DOI | MR
[8] M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1975), 255–259 ; “II”, 261–269 | DOI | MR | Zbl | Zbl
[9] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981 | MR | Zbl
[10] S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 | DOI | MR | Zbl
[11] U. Einmahl, A refinement of the KMT inequality for partial sum strong approximation, Techn. Rep. Ser. Lab. Res. Statist. Probab., 88, Carleton University, University of Ottawa, Ottawa, Canada, 1986
[12] U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Theor. Rel. Fields, 76 (1987), 81–101 | DOI | MR | Zbl
[13] U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15 (1987), 1419–1440 | DOI | MR | Zbl
[14] U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 | DOI | MR | Zbl
[15] U. Einmahl, “A new strong invariance principle for sums of independent random vectors”, Zap. nauchn. semin. POMI, 364, POMI, SPb., 2009, 5–31 | MR | Zbl
[16] U. Einmahl, D. M. Mason, “Rates of clustering in Strassen's LIL for partial sums processes”, Probab. Theor. Rel. Fields, 97 (1993), 479–487 | DOI | MR | Zbl
[17] F. Götze, A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional invariance principle”, Teoriya veroyatn. i ee primen., 53 (2008), 100–123 | DOI | MR
[18] V. V. Gorodetskii, “O skorosti skhodimosti v mnogomernom printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 20 (1975), 642–649 | Zbl
[19] N. C. Jain, K. Jogdeo, W. F. Stout, “Upper and lower functions for martingales and mixing processes”, Ann. Probab., 3 (1975), 119–145 | DOI | MR | Zbl
[20] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 ; “II”, 34 (1976), 34–58 | DOI | MR | Zbl | DOI | MR | Zbl
[21] P. Major, “The approximation of partial sums of independent r.v.'s”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 213–220 | DOI | MR | Zbl
[22] P. Major, “Approximation of partial sums of i.i.d.r.v.'s when summands have only two moments”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 221–230 | DOI | MR
[23] P. Major, “On the invariance principle for sums of independent identically distributed random variables”, J. Multivar. Anal., 8 (1978), 487–517 | DOI | MR | Zbl
[24] P. Major, “An improvement of Strassen's invariance principle”, Ann. Probab., 7 (1979), 55–61 | DOI | MR | Zbl
[25] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR
[26] W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Lect. Notes in Math., 709, 1979, 171–193 | DOI | MR | Zbl
[27] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl
[28] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy inst. matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 | MR
[29] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR
[30] A. I. Sakhanenko, “O tochnosti silnoi normalnoi approksimatsii v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 13, Nauka, Novosibirsk, 1989, 40–66 | MR
[31] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability, II (Seattle, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 223–245 | MR | Zbl
[32] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti v terminakh srezannykh stepennykh momentov”, Sibirskii matem. zhurn., 47 (2006), 1355–1371 | MR | Zbl
[33] Qi-Man Shao, “On a problem of Csörgő and Révész”, Ann. Probab., 17 (1989), 809–812 | DOI | MR | Zbl
[34] Qi-Man Shao, “Strong approximation theorems for independent random variables and their applications”, J. Multivar. Anal., 52 (1995), 107–130 | DOI | MR | Zbl
[35] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievsk. un-ta, Kiev, 1961
[36] V. Strassen, “An invariance principle for the law of iterated logarithm”, Z. Wahrscheinlichkeitstheor. verw. Geb., 3 (1967), 211–226 | DOI | MR
[37] V. Strassen, “Almost sure behavior of sums of independent random variables and martingales”, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, V. II: Contributions to Probability Theory, Part 1 (Berkeley, CA, 1965/66), Univ. California Press, Berkeley, CA, 1967, 315–343 | MR | Zbl
[38] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v mnogomernoi tsentralnoi predelnoi teoreme dlya sluchainykh velichin s konechnymi eksponentsialnymi momentami”, Teoriya veroyatn. i ee primen., 31 (1986), 246–265 | MR
[39] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl
[40] A. Yu. Zaitsev, “Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I”, Teoriya veroyatn. i primen., 45 (2000), 718–738 ; “II”, 46 (2001), 535–561 ; “III”, 46 (2001), 744–769 | DOI | MR | Zbl | MR | Zbl | MR
[41] A. Yu. Zaitsev, “On the strong gaussian approximation in multidimensional case”, Annales de l'I.S.U.P. Publications de l'Institut de Statistique de l'Université de Paris, 45 (2001), 3–7 | MR | Zbl
[42] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, Proceedings of the International Congress of Mathematicians, Vol. III. Invited Lectures (Bejing, 2002), 2002, 107–116 | MR | Zbl
[43] A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v mnogomernom printsipe invariantnosti”, Zap. nauchn. semin. POMI, 339, 2006, 37–53 | MR | Zbl
[44] A. Yu. Zaitsev, “Otsenki tochnosti silnoi gaussovskoi approksimatsii summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 351, 2007, 141–157 | MR