A multivariate Bahadur–Kiefer representation for the empirical copula process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 120-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We provide a multivariate extension of the Kiefer (1970) strong limit law for the Bahadur–Kiefer reperesentation. This allows us to derive optimal rates for the strong approximation of empirical copula processes by sequences of Gaussian processes. We also provide a full characterization of empirical copulas in a general framework. Bibl. – 30 titles.
@article{ZNSL_2009_364_a5,
     author = {P. Deheuvels},
     title = {A multivariate {Bahadur{\textendash}Kiefer} representation for the empirical copula process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--147},
     year = {2009},
     volume = {364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/}
}
TY  - JOUR
AU  - P. Deheuvels
TI  - A multivariate Bahadur–Kiefer representation for the empirical copula process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 120
EP  - 147
VL  - 364
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/
LA  - en
ID  - ZNSL_2009_364_a5
ER  - 
%0 Journal Article
%A P. Deheuvels
%T A multivariate Bahadur–Kiefer representation for the empirical copula process
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 120-147
%V 364
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/
%G en
%F ZNSL_2009_364_a5
P. Deheuvels. A multivariate Bahadur–Kiefer representation for the empirical copula process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 120-147. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/

[1] N. Castelle, “Approximations fortes pour des processus bivariés”, Canad. J. Math., 54 (2002), 533–553 | DOI | MR | Zbl

[2] N. Castelle, F. Laurent-Bonvalot, “Strong approximation of bivariate uniform empirical processes”, Ann. Inst. H. Poincaré Ser. B Probab. Statist., 34 (1998), 425–480 | DOI | MR | Zbl

[3] K. L. Chung, “An estimate concerning the Kolmogorov limit distributions”, Trans. Amer. Math. Soc., 67 (1949), 36–50 | DOI | MR | Zbl

[4] C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, Distributions with Given Marginals and Statistical Modelling, Kluwer, Dordrecht, 2002 | MR

[5] G. Dall'Aglio, S. Kotz, G. Salinetti, Advances in Probability Distributions with Given Marginals, Kluwer, Dordrecht, 1991 | MR | Zbl

[6] P. Deheuvels, “Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes”, Publ. Inst. Statist. Univ. Paris, 23 (1978), 1–36 | MR | Zbl

[7] P. Deheuvels, “Propriétés d'existence et propriétés topologiques des fonctions de dépendance”, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 217–220 | MR | Zbl

[8] P. Deheuvels, “La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance”, Bull. Acad. Roy. Belg. Cl. Sci., 65 (1979), 274–292 | MR | Zbl

[9] P. Deheuvels, “Some applications of the dependence functions to statistical inference: Nonparametric estimates of extreme values distributions, and a Kiefer type universal bound for the uniform test of independence”, Coll. Math. János Bolyai, 32 (1980), 183–201 | MR

[10] P. Deheuvels, D. M. Mason, “Bahadur–Kiefer processes”, Ann. Probab., 18 (1990), 669–697 | DOI | MR | Zbl

[11] P. Deheuvels, “Weighted multivariate tests of independence”, Communications in Statistics, Theory and Methods, 36 (2007), 2477–2491 | DOI | MR | Zbl

[12] P. Deheuvels, G. Peccati, M. Yor, “On quadratic functionals of the Brownian sheet and related processes”, Stochastic Processes Appl., 116 (2006), 493–538 | DOI | MR | Zbl

[13] E. Del Barrio, P. Deheuvels, S. van de Geer, Lectures on Empirical Processes, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich, 2007 | MR

[14] R. Féron, “Sur les tableaux de corrélation dont les marges sont données, cas de l'espace à trois dimensions”, Publ. Inst. Statist. Univ. Paris, 5 (1956), 3–12 | MR

[15] H. Finkelstein, “The law of the iterated logarithm for empirical distributions”, Ann. Math. Statist., 42 (1971), 607–615 | DOI | MR | Zbl

[16] M. Fréchét, “Sur les tableaux de corrélation dont les marges sont données”, Ann. Univ. Lyon, A14 (1951), 53–77 | MR | Zbl

[17] C. Genest, R. J. MacKay, “The joy of copulas: Bivariate distributions with uniform marginals”, Amer. Statist., 40 (1986), 280–285 | DOI | MR

[18] J. Hájek, Z. S̆idák, Theory of Rank Tests, Academic Press, New York, 1967 | MR

[19] J. Kiefer, “Deviations between the sample quantile process and the sample d.f.”, Nonparametric Techniques in Statistical Inference, ed. M. L. Puri, Cambridge Univ., 1970, 299–319 | MR

[20] T. L. Lai, “Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes”, Z. Wahrsch. verw. Gebiete, 29 (1974), 7–19 | DOI | MR | Zbl

[21] P. Massart, “Strong approximation for multivariate empirical and related processes, via KMT constructions”, Ann. Probab., 17 (1989), 266–291 | DOI | MR | Zbl

[22] R. B. Nelsen, An Introduction to Copulas, Lect. Notes Statist., 139, Springer, New York, 1999 | DOI | MR | Zbl

[23] L. Rüschendorf, “Asymptotic distributions of multivariate rank order statistics”, Ann. Statist., 4 (1976), 912–923 | DOI | MR | Zbl

[24] L. Rüschendorf, “Constructions of multivariate distributions with given marginals”, Ann. Inst. Statist. Math., 37 (1985), 225–233 | DOI | MR | Zbl

[25] G. R. Shorack, “Kiefer's theorem via the Hungarian construction”, Z. Wahrsch. verw. Gebiete, 61 (1982), 369–373 | DOI | MR | Zbl

[26] G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, Wiley, New York, 1986 | MR | Zbl

[27] B. Schweizer, “Thirty years of copulas”, Advances in Probability Distributions with Given Marginals, eds. Dall'Aglio G. et al., Kluwer, Dordrecht, 1991, 13–50 | DOI | MR

[28] A. Sklar, “Fonctions de répartition à $n$ dimensions et leurs marges”, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229–231 | MR

[29] A. Sklar, “Random variables, joint distribution functions, and copulas”, Kybernetika, 9 (1973), 449–460 | MR | Zbl

[30] W. Stute, “The oscillation behavior of empirical pracesses: The multivariate case”, Ann. Probab., 12 (1984), 361–379 | DOI | MR | Zbl