@article{ZNSL_2009_364_a5,
author = {P. Deheuvels},
title = {A multivariate {Bahadur{\textendash}Kiefer} representation for the empirical copula process},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--147},
year = {2009},
volume = {364},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/}
}
P. Deheuvels. A multivariate Bahadur–Kiefer representation for the empirical copula process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 120-147. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a5/
[1] N. Castelle, “Approximations fortes pour des processus bivariés”, Canad. J. Math., 54 (2002), 533–553 | DOI | MR | Zbl
[2] N. Castelle, F. Laurent-Bonvalot, “Strong approximation of bivariate uniform empirical processes”, Ann. Inst. H. Poincaré Ser. B Probab. Statist., 34 (1998), 425–480 | DOI | MR | Zbl
[3] K. L. Chung, “An estimate concerning the Kolmogorov limit distributions”, Trans. Amer. Math. Soc., 67 (1949), 36–50 | DOI | MR | Zbl
[4] C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, Distributions with Given Marginals and Statistical Modelling, Kluwer, Dordrecht, 2002 | MR
[5] G. Dall'Aglio, S. Kotz, G. Salinetti, Advances in Probability Distributions with Given Marginals, Kluwer, Dordrecht, 1991 | MR | Zbl
[6] P. Deheuvels, “Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes”, Publ. Inst. Statist. Univ. Paris, 23 (1978), 1–36 | MR | Zbl
[7] P. Deheuvels, “Propriétés d'existence et propriétés topologiques des fonctions de dépendance”, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 217–220 | MR | Zbl
[8] P. Deheuvels, “La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance”, Bull. Acad. Roy. Belg. Cl. Sci., 65 (1979), 274–292 | MR | Zbl
[9] P. Deheuvels, “Some applications of the dependence functions to statistical inference: Nonparametric estimates of extreme values distributions, and a Kiefer type universal bound for the uniform test of independence”, Coll. Math. János Bolyai, 32 (1980), 183–201 | MR
[10] P. Deheuvels, D. M. Mason, “Bahadur–Kiefer processes”, Ann. Probab., 18 (1990), 669–697 | DOI | MR | Zbl
[11] P. Deheuvels, “Weighted multivariate tests of independence”, Communications in Statistics, Theory and Methods, 36 (2007), 2477–2491 | DOI | MR | Zbl
[12] P. Deheuvels, G. Peccati, M. Yor, “On quadratic functionals of the Brownian sheet and related processes”, Stochastic Processes Appl., 116 (2006), 493–538 | DOI | MR | Zbl
[13] E. Del Barrio, P. Deheuvels, S. van de Geer, Lectures on Empirical Processes, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich, 2007 | MR
[14] R. Féron, “Sur les tableaux de corrélation dont les marges sont données, cas de l'espace à trois dimensions”, Publ. Inst. Statist. Univ. Paris, 5 (1956), 3–12 | MR
[15] H. Finkelstein, “The law of the iterated logarithm for empirical distributions”, Ann. Math. Statist., 42 (1971), 607–615 | DOI | MR | Zbl
[16] M. Fréchét, “Sur les tableaux de corrélation dont les marges sont données”, Ann. Univ. Lyon, A14 (1951), 53–77 | MR | Zbl
[17] C. Genest, R. J. MacKay, “The joy of copulas: Bivariate distributions with uniform marginals”, Amer. Statist., 40 (1986), 280–285 | DOI | MR
[18] J. Hájek, Z. S̆idák, Theory of Rank Tests, Academic Press, New York, 1967 | MR
[19] J. Kiefer, “Deviations between the sample quantile process and the sample d.f.”, Nonparametric Techniques in Statistical Inference, ed. M. L. Puri, Cambridge Univ., 1970, 299–319 | MR
[20] T. L. Lai, “Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes”, Z. Wahrsch. verw. Gebiete, 29 (1974), 7–19 | DOI | MR | Zbl
[21] P. Massart, “Strong approximation for multivariate empirical and related processes, via KMT constructions”, Ann. Probab., 17 (1989), 266–291 | DOI | MR | Zbl
[22] R. B. Nelsen, An Introduction to Copulas, Lect. Notes Statist., 139, Springer, New York, 1999 | DOI | MR | Zbl
[23] L. Rüschendorf, “Asymptotic distributions of multivariate rank order statistics”, Ann. Statist., 4 (1976), 912–923 | DOI | MR | Zbl
[24] L. Rüschendorf, “Constructions of multivariate distributions with given marginals”, Ann. Inst. Statist. Math., 37 (1985), 225–233 | DOI | MR | Zbl
[25] G. R. Shorack, “Kiefer's theorem via the Hungarian construction”, Z. Wahrsch. verw. Gebiete, 61 (1982), 369–373 | DOI | MR | Zbl
[26] G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, Wiley, New York, 1986 | MR | Zbl
[27] B. Schweizer, “Thirty years of copulas”, Advances in Probability Distributions with Given Marginals, eds. Dall'Aglio G. et al., Kluwer, Dordrecht, 1991, 13–50 | DOI | MR
[28] A. Sklar, “Fonctions de répartition à $n$ dimensions et leurs marges”, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229–231 | MR
[29] A. Sklar, “Random variables, joint distribution functions, and copulas”, Kybernetika, 9 (1973), 449–460 | MR | Zbl
[30] W. Stute, “The oscillation behavior of empirical pracesses: The multivariate case”, Ann. Probab., 12 (1984), 361–379 | DOI | MR | Zbl