@article{ZNSL_2009_364_a3,
author = {M. I. Gordin},
title = {Martingale-coboundary representation for a~class of stationary random fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--108},
year = {2009},
volume = {364},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a3/}
}
M. I. Gordin. Martingale-coboundary representation for a class of stationary random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 88-108. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a3/
[1] A. K. Basu, C. C. Y. Dorea, “On functional central limit theorem for stationary martingale random fields”, Acta Math. Acad. Sci. Hungar., 33:3–4 (1979), 307–316 | DOI | MR | Zbl
[2] R. Cairoli, J. B. Walsh, “Stochastic integrals in the plane”, Acta Math., 134 (1975), 111–183 | DOI | MR | Zbl
[3] C. M. Deo, “A functional central limit theorem for stationary random fields”, Ann. Probab., 3 (1975), 708–715 | DOI | MR | Zbl
[4] M. I. Gordin, “O tsentralnoi predelnoi teoreme dlya statsionarnykh sluchainykh posledovatelnostei”, DAN SSSR, 188:4 (1969), 739–741 | MR | Zbl
[5] M. I. Gordin, “O povedenii dispersii summ znachenii sluchainykh velichin, obrazuyuschikh statsionarnyi protsess”, Teor. veroyatn. i eë primenen., 16 (1971), 484–494 | MR | Zbl
[6] M. I. Gordin, B. A. Lifshits, “Tsentralnaya predelnaya teorema dlya statsionarnykh protsessov Markova”, DAN SSSR, 239:4 (1978), 766–767 | MR | Zbl
[7] M. M. Leonenko, “Tsentralnaya predelnaya teorema dlya odnogo klassa sluchainykh polei”, Teor. veroyatn. i mat. statist. (Tashkent), 17 (1977), 87–93 | MR | Zbl
[8] V. P. Leonov, “O dispersii vremennykh srednikh statsionarnogo sluchainogo protsessa”, Teor. veroyatn. i eë primenen., 6 (1961), 93–101 | MR | Zbl
[9] H. Dehling, M. Denker, M. Gordin, “$U$- and $V$-statistics of a measure preserving transformation: central limit theorems” (to appear)
[10] K. Fukuyama, B. Petit, “Le théorème limite central pour les suites de R. C. Baker”, Ergodic theory dynam. systems, 21 (2001), 479–492 | DOI | MR | Zbl
[11] M. Gordin, M. Weber, “Degeneration in the central limit theorem for a class of multidimensional actions” (to appear)
[12] N. Maigret, “Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive”, Ann. Inst. H. Poincaré Sect. B (N.S.), 14:4 (1978), 425–440 | MR | Zbl
[13] M. Maxwell, M. Woodroofe, “Central limit theorems for additive functionals of Markov chains”, Ann. Probab., 28:2 (2000), 713–724 | DOI | MR | Zbl
[14] M. Peligrad, S. Utev, “A new maximal inequality and invariance principle for stationary sequences”, Ann. Probab., 33:2 (2005), 798–815 | DOI | MR | Zbl