On the concentration of high dimensional matrices with randomly signed entries
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 32-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Results on the concentration and asymptotic behaviour of large dimensional random matrices with random signs are obtained. They extend corresponding results, originating in the 1978 work of V. N. Sudakov, in the scheme of weighted sums with limiting Gaussian mixture families to Wigner distributions. Bibl. – 28 titles.
@article{ZNSL_2009_364_a1,
     author = {S. G. Bobkov and F. G\"otze and A. N. Tikhomirov},
     title = {On the concentration of high dimensional matrices with randomly signed entries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--69},
     year = {2009},
     volume = {364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a1/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - On the concentration of high dimensional matrices with randomly signed entries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 32
EP  - 69
VL  - 364
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a1/
LA  - en
ID  - ZNSL_2009_364_a1
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A F. Götze
%A A. N. Tikhomirov
%T On the concentration of high dimensional matrices with randomly signed entries
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 32-69
%V 364
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a1/
%G en
%F ZNSL_2009_364_a1
S. G. Bobkov; F. Götze; A. N. Tikhomirov. On the concentration of high dimensional matrices with randomly signed entries. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 32-69. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a1/

[1] M. Anttila, K. Ball, I. Perissinaki, “The central limit problem for convex bodies”, Trans. Amer. Math. Soc., 355:12 (2003), 4723–4735 | DOI | MR | Zbl

[2] Z. D. Bai, “Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices”, Ann. Probab., 21 (1993), 625–648 | DOI | MR | Zbl

[3] Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices: a review”, Statistica Sinica, 9 (1999), 611–661 | MR

[4] R. Bellman, Introduction to matrix analysis, McGraw-Hill Book Company, New York, 1970 | MR | Zbl

[5] S. G. Bobkov, “On concentration of distributions of random weighted sums”, Ann. Probab., 31:1 (2003), 195–215 | DOI | MR | Zbl

[6] S. G. Bobkov, “Concentration of distributions of the weighted sums with Bernoullian coefficients”, Geom. Aspects Funct. Anal., Lect. Notes Math., 1807, 2003, 27–36 | DOI | MR | Zbl

[7] S. G. Bobkov, F. Götze, “Exponential integrability and transportation cost related to logarithmic Sobolev inequalities”, J. Funct. Anal., 163:1 (1999), 1–28 | DOI | MR | Zbl

[8] B. V. Bronk, Topics in the theory of random matrices, Thesis, Princeton University, 1964

[9] A. Guionnet, O. Zeitouni, “Concentration of the spectral measure for large matrices”, Electron. Comm. Probab., 5 (2000), 119–136 | DOI | MR | Zbl

[10] V. L. Girko, “Asymptotics of the distribution of the spectrum of random matrices”, Russian Math. Surveys, 44 (1989), 3–36 | DOI | MR | Zbl

[11] F. Götze, A. N. Tikhomirov, “Rate of convergence to the semi-circular law”, Probab. Theory Relat. Fields, 127 (2003), 228–276 | DOI | MR | Zbl

[12] I. S. Gradstein, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Inc., New York, 1994 | MR

[13] R. Horn, Ch. Johnson, Matrix analysis, Cambridge University Press, New York, 1991 | MR | Zbl

[14] A. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur, “On asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37 (1996), 5033–5060 | DOI | MR | Zbl

[15] M. Ledoux, “Concentration of measure and logarithmic Sobolev inequalities”, Séminaire de Probabilités, XXXIII, Lect. Notes Math., 1799, 1999, 120–216 | DOI | MR

[16] M. Ledoux, The concentration of measure phenomenon, Math. Surveys and monographs, 89, AMS, 2001 | MR | Zbl

[17] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, San Diego, 1991 | MR | Zbl

[18] A. Naor, D. Romik, “Projecting the surface measure of the sphere of $\ell_p^n$”, Ann. Inst. H. Poincaré Probab. Statist., 39:2 (2003), 241–261 | DOI | MR | Zbl

[19] L. A. Pastur, “Spectra of random self-adjoint operators”, Russian Math. Surveys, 28:1(169) (1973), 3–64 | DOI | MR | Zbl

[20] L. A. Pastur, “Eigenvalue distribution of random matrices”, Ann. l'Inst. H. Poincaré, 64 (1996), 325–337 | MR | Zbl

[21] N. Rosenzweig, Statistical mechanics of equally likely quantum systems in Statistical physics, Brandeis Summer Institute, Vol. 3, Benjamin, New York, 1962 | MR

[22] R. M. Salem, A. Zygmund, “Trigonometric series whose terms have random sign”, Acta Math., 91 (1954), 245–301 | DOI | MR | Zbl

[23] V. N. Sudakov, “Typical distributions of linear functionals in finite-dimensional spaces of higher dimension”, Soviet Math. Dokl., 19:6 (1978), 1578–1582 | MR | Zbl

[24] M. Talagrand, “An isoperimetric theorem on the cube and the Kintchine–Kahane inequalities”, Proc. Amer. Math. Soc., 104:3 (1988), 905–909 | DOI | MR | Zbl

[25] H. von Weizsäcker, “Sudakov's typical marginals, random linear functionals, and a conditional central limit theorem”, Probab. Theory Rel. Fields, 107 (1997), 313–324 | DOI | MR | Zbl

[26] E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl

[27] E. Wigner, “On the distribution of the roots of certain symmetric matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl

[28] V. M. Zolotarev, “An estimate for the difference between distributions in Lévy metric”, Proceedings of Steklov's Math. Institute, 112, 1971, 224–231 | MR | Zbl