A new strong invariance principle for sums of independent random vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 5-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a strong invariance principle for sums of independent, identically distributed random vectors which need not have finite second absolute moments. Various applications are indicated. In particular, we show how one can re-obtain some recent LIL type results from this invariance principle. Bibl. – 16 titles.
@article{ZNSL_2009_364_a0,
     author = {U. Einmahl},
     title = {A new strong invariance principle for sums of independent random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {364},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/}
}
TY  - JOUR
AU  - U. Einmahl
TI  - A new strong invariance principle for sums of independent random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 31
VL  - 364
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/
LA  - en
ID  - ZNSL_2009_364_a0
ER  - 
%0 Journal Article
%A U. Einmahl
%T A new strong invariance principle for sums of independent random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-31
%V 364
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/
%G en
%F ZNSL_2009_364_a0
U. Einmahl. A new strong invariance principle for sums of independent random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/