A new strong invariance principle for sums of independent random vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 5-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We provide a strong invariance principle for sums of independent, identically distributed random vectors which need not have finite second absolute moments. Various applications are indicated. In particular, we show how one can re-obtain some recent LIL type results from this invariance principle. Bibl. – 16 titles.
@article{ZNSL_2009_364_a0,
     author = {U. Einmahl},
     title = {A new strong invariance principle for sums of independent random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     year = {2009},
     volume = {364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/}
}
TY  - JOUR
AU  - U. Einmahl
TI  - A new strong invariance principle for sums of independent random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 31
VL  - 364
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/
LA  - en
ID  - ZNSL_2009_364_a0
ER  - 
%0 Journal Article
%A U. Einmahl
%T A new strong invariance principle for sums of independent random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-31
%V 364
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/
%G en
%F ZNSL_2009_364_a0
U. Einmahl. A new strong invariance principle for sums of independent random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a0/

[1] E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvektoren, Dissertation, Universität Göttingen, 1982

[2] R. Bhatia, Matrix Analysis, Springer, New York, 1997 | MR | Zbl

[3] U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15 (1987), 1419–1440 | DOI | MR | Zbl

[4] U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Th. Rel. Fields, 76 (1987), 81–101 | DOI | MR | Zbl

[5] U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivar. Analysis, 28 (1989), 20–68 | DOI | MR | Zbl

[6] U. Einmahl, “A generalization of Strassen's functional LIL”, J. Theor. Probab., 20 (2007), 901–915 | DOI | MR | Zbl

[7] U. Einmahl, D. Li, “Some results on two-sided LIL behavior”, Ann. Probab., 33 (2005), 1601–1624 | DOI | MR | Zbl

[8] U. Einmahl, D. Li, “Characterization of LIL behavior in Banach space”, Trans. Am. Math. Soc., 360 (2008), 6677–6693 | DOI | MR | Zbl

[9] U. Einmahl, D. M. Mason, “Rates of clustering in Strassen's LIL for partial sum processes”, Probab. Theory Relat. Fields, 97 (1993), 479–487 | DOI | MR | Zbl

[10] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent r.v.'s and the sample d.f., II”, Z. Wahrsch. Verw. Gebiete, 34 (1976), 33–58 | DOI | MR | Zbl

[11] P. Major, “The approximation of partial sums of independent r.v.'s.”, Z. Wahrsch. Verw. Gebiete, 35 (1976), 213–220 | DOI | MR | Zbl

[12] P. Major, “An improvement of Strassen's invariance principle”, Ann. Probab., 7 (1979), 55–61 | DOI | MR | Zbl

[13] W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Probability in Banach Spaces, II, Lect. Notes Math., 709, Springerd, Berlin, 1979, 171–193 | DOI | MR

[14] A. I. Sakhanenko, “A New Way to Obtain Estimates in the Invariance Principle”, High Dimensional Probability, II, Progress in Probability, 7, Birkhäuser, Boston, 2000, 223–245 | MR

[15] V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrsch. Verw. Gebiete, 3 (1964), 211–226 | DOI | MR | Zbl

[16] A. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM Probab. Statist., 2 (1998), 41–108 | DOI | MR | Zbl