A semiparametric model for interval censored and truncated data
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 139-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work we consider a complex observational scheme, that is, survival data that are both interval censored and truncated. We assume a semiparametric Cox model for the survival function and consider censoring and truncation distributions as in Huber, Solev and Vonta (2006, 2007). We establish the form of the least favorable model (Slud and Vonta (2005)) for the cumulative hazard function, which plays the role of the infinite-dimensional nuisance parameter, for fixed values of the finite-dimensional parameter of interest. The least favorable model cannot be defined in closed form. Bibl. – 8 titles.
@article{ZNSL_2009_363_a7,
     author = {C. Huber and F. Vonta},
     title = {A semiparametric model for interval censored and truncated data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--150},
     year = {2009},
     volume = {363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a7/}
}
TY  - JOUR
AU  - C. Huber
AU  - F. Vonta
TI  - A semiparametric model for interval censored and truncated data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 139
EP  - 150
VL  - 363
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a7/
LA  - en
ID  - ZNSL_2009_363_a7
ER  - 
%0 Journal Article
%A C. Huber
%A F. Vonta
%T A semiparametric model for interval censored and truncated data
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 139-150
%V 363
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a7/
%G en
%F ZNSL_2009_363_a7
C. Huber; F. Vonta. A semiparametric model for interval censored and truncated data. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 139-150. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a7/

[1] A. Alioum, D. Commenges, “A proportional hazards model for arbitrarily censored and truncated data”, Biometrics, 52 (1996), 512–524 | DOI | Zbl

[2] H. Frydman, “A note on nonparametric estimation of the distribution function from interval-censored and truncated observations”, Journal of the Royal Statistical Society Series B, 56 (1994), 71–74 | MR | Zbl

[3] C. Huber-Carol, V. Solev, F. Vonta,, “Interval censored and truncated data: rate of convergence of NPMLE of the density”, Journal of Statistical Planning and Inference (to appear)

[4] C. Huber-Carol, V. Solev, F. Vonta, “Estimation of density for arbitrarily censored and truncated data”, Probability, Statistics and Modelling in Public Health, eds. Nikulin M. S., Commenges D., Huber-Carol C., Springer, Kluwer Acad. Publ., New York, 2007, 246–265 | MR

[5] C. Huber-Carol, F. Vonta, “Frailty models for arbitrarily censored and truncated data”, Lifetime Data Analysis, 10 (2004), 369–388 | DOI | MR | Zbl

[6] M. Kosorok, B. Lee, J. Fine, “Robust inference for univariate proportional hazards frailty regression models”, Ann. Statist., 32:4 (2004), 1448–1491 | DOI | MR | Zbl

[7] E. Slud, F. Vonta, “Efficient semiparametric estimators via modified profile likelihood”, Jour. Statist. Planning and Inference, 129 (2005), 339–367 | DOI | MR | Zbl

[8] B. W. Turnbull, “The empirical distribution function with arbitrary grouped, censored and truncated data”, Journal of the Royal Statistical Society, 38 (1976), 290–295 | MR | Zbl