@article{ZNSL_2009_363_a5,
author = {S. Trevezas and N. Limnios},
title = {Maximum likelihood estimation for general hidden {semi-Markov} processes with backward recurrence time dependence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--125},
year = {2009},
volume = {363},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/}
}
TY - JOUR AU - S. Trevezas AU - N. Limnios TI - Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 105 EP - 125 VL - 363 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/ LA - en ID - ZNSL_2009_363_a5 ER -
%0 Journal Article %A S. Trevezas %A N. Limnios %T Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence %J Zapiski Nauchnykh Seminarov POMI %D 2009 %P 105-125 %V 363 %U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/ %G en %F ZNSL_2009_363_a5
S. Trevezas; N. Limnios. Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 105-125. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/
[1] V. Barbu, N. Limnios, “Maximum likelihood estimation for hidden semi-Markov models”, C. R. Acad. Sci. Paris, 342 (2006), 201–205 | DOI | MR | Zbl
[2] V. Barbu, N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models toward Applications, Springer, 2008 | MR
[3] L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions of finite state Markov chains”, Ann. Math. Stat., 37 (1966), 1554–1563 | DOI | MR | Zbl
[4] P. J. Bickel, Y. Ritov, T. Ryden, “Asymptotic normality of the Maximum-likelihood estimator for general hidden-Markov models”, Ann. Statist., 26:4 (1998), 1614–1635 | DOI | MR | Zbl
[5] O. Chryssaphinou, M. Karaliopoulou, N. Limnios, “On Discrete Time Semi-Markov Chains and Applications in Words occurrences”, Communications in Statistics-Theory and Methods, 37 (2008), 1306–1322 | DOI | MR | Zbl
[6] R. A. L. Elliott, J. Moore, Hidden Markov Models: Estimation and Control, Springer, New York, 1995 | MR | Zbl
[7] Y. Ephraim, N. Merhav, “Hidden markov Processes”, IEEE Trans. Inf. Theory, 48:6 (2002), 1518–1569 | DOI | MR | Zbl
[8] J. Ferguson, “Variable duration models for speech”, Proc. of the symposium on the Application of Hidden Markov Models to Text and Speech, Princeton, NJ, 1980, 143–179
[9] Y. Guédon, “Estimating hidden semi-Markov chains from discrete sequences”, Journal of Computational and Graphical Statistics, 12:3 (2003), 604–639 | DOI | MR
[10] J. Kiefer, J. Wolfowitz, “Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters”, Ann. Math. Stat., 27 (1956), 887–906 | DOI | MR | Zbl
[11] A. Krogh, M. Brown, I. S. Mian, K. Sjlander, D. Haussler, “Hidden Markov models in computational biology: Applications to protein modeling”, J. Molecular Biology, 235 (1994), 1501–1531 | DOI
[12] B. G. Leroux, “Maximum-likelihood estimation for hidden markov models”, Stochastic Process. Appl., 40 (1992), 127–143 | DOI | MR | Zbl
[13] N. Limnios, G. Oprisan, Semi-Markov Processes and Reliability, Birkhäuser, Boston, 2001 | MR | Zbl
[14] T. Petrie, “Probabilistic functions of finite state Markov chains”, Ann. Math. Stat., 40 (1969), 97–115 | DOI | MR | Zbl
[15] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition”, Proc. IEEE, 77 (1989), 257–284 | DOI
[16] L. R. Rabiner, B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall, Englewood Cliffs, JN, 1993
[17] J. Sansom, P. Thomson, “Fitting hidden semi-Markov models to break-point rainfall data”, Journal of applied Probability, 38A (2001), 142–157 | DOI | MR | Zbl