Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 105-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article concerns the study of the asymptotic properties of the maximum likelihood estimator (MLE) for the general hidden semi-Markov model (HSMM) with backward recurrence time dependence. By transforming the general HSMM into a general hidden Markov model, we prove that under some regularity conditions, the MLE is strongly consistent and asymptotically normal. We also provide useful expressions for the asymptotic covariance matrices, involving the MLE of the conditional sojourn times and the embedded Markov chain of the hidden semi-Markov chain. Bibl. – 17 titles.
@article{ZNSL_2009_363_a5,
     author = {S. Trevezas and N. Limnios},
     title = {Maximum likelihood estimation for general hidden {semi-Markov} processes with backward recurrence time dependence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--125},
     year = {2009},
     volume = {363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/}
}
TY  - JOUR
AU  - S. Trevezas
AU  - N. Limnios
TI  - Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 105
EP  - 125
VL  - 363
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/
LA  - en
ID  - ZNSL_2009_363_a5
ER  - 
%0 Journal Article
%A S. Trevezas
%A N. Limnios
%T Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 105-125
%V 363
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/
%G en
%F ZNSL_2009_363_a5
S. Trevezas; N. Limnios. Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 105-125. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a5/

[1] V. Barbu, N. Limnios, “Maximum likelihood estimation for hidden semi-Markov models”, C. R. Acad. Sci. Paris, 342 (2006), 201–205 | DOI | MR | Zbl

[2] V. Barbu, N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models toward Applications, Springer, 2008 | MR

[3] L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions of finite state Markov chains”, Ann. Math. Stat., 37 (1966), 1554–1563 | DOI | MR | Zbl

[4] P. J. Bickel, Y. Ritov, T. Ryden, “Asymptotic normality of the Maximum-likelihood estimator for general hidden-Markov models”, Ann. Statist., 26:4 (1998), 1614–1635 | DOI | MR | Zbl

[5] O. Chryssaphinou, M. Karaliopoulou, N. Limnios, “On Discrete Time Semi-Markov Chains and Applications in Words occurrences”, Communications in Statistics-Theory and Methods, 37 (2008), 1306–1322 | DOI | MR | Zbl

[6] R. A. L. Elliott, J. Moore, Hidden Markov Models: Estimation and Control, Springer, New York, 1995 | MR | Zbl

[7] Y. Ephraim, N. Merhav, “Hidden markov Processes”, IEEE Trans. Inf. Theory, 48:6 (2002), 1518–1569 | DOI | MR | Zbl

[8] J. Ferguson, “Variable duration models for speech”, Proc. of the symposium on the Application of Hidden Markov Models to Text and Speech, Princeton, NJ, 1980, 143–179

[9] Y. Guédon, “Estimating hidden semi-Markov chains from discrete sequences”, Journal of Computational and Graphical Statistics, 12:3 (2003), 604–639 | DOI | MR

[10] J. Kiefer, J. Wolfowitz, “Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters”, Ann. Math. Stat., 27 (1956), 887–906 | DOI | MR | Zbl

[11] A. Krogh, M. Brown, I. S. Mian, K. Sjlander, D. Haussler, “Hidden Markov models in computational biology: Applications to protein modeling”, J. Molecular Biology, 235 (1994), 1501–1531 | DOI

[12] B. G. Leroux, “Maximum-likelihood estimation for hidden markov models”, Stochastic Process. Appl., 40 (1992), 127–143 | DOI | MR | Zbl

[13] N. Limnios, G. Oprisan, Semi-Markov Processes and Reliability, Birkhäuser, Boston, 2001 | MR | Zbl

[14] T. Petrie, “Probabilistic functions of finite state Markov chains”, Ann. Math. Stat., 40 (1969), 97–115 | DOI | MR | Zbl

[15] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition”, Proc. IEEE, 77 (1989), 257–284 | DOI

[16] L. R. Rabiner, B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall, Englewood Cliffs, JN, 1993

[17] J. Sansom, P. Thomson, “Fitting hidden semi-Markov models to break-point rainfall data”, Journal of applied Probability, 38A (2001), 142–157 | DOI | MR | Zbl