Risk bounds for kernel density estimators
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 66-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We use results from probability on Banach spaces and Poissonization techniques to develop sharp finite sample and asymptotic moment bounds for the Lp risk for kernel density estimators. Our results are shown to augment previous work in this area. Bibl. – 19 titles.
@article{ZNSL_2009_363_a4,
     author = {D. M. Mason},
     title = {Risk bounds for kernel density estimators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--104},
     year = {2009},
     volume = {363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a4/}
}
TY  - JOUR
AU  - D. M. Mason
TI  - Risk bounds for kernel density estimators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 66
EP  - 104
VL  - 363
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a4/
LA  - en
ID  - ZNSL_2009_363_a4
ER  - 
%0 Journal Article
%A D. M. Mason
%T Risk bounds for kernel density estimators
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 66-104
%V 363
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a4/
%G en
%F ZNSL_2009_363_a4
D. M. Mason. Risk bounds for kernel density estimators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 66-104. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a4/

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[2] J. Bretagnolle, C. Huber, “Estimation des densités: risque minimax”, Z. Wahrsch. Verw. Gebiete, 47 (1979), 119–137 | DOI | MR | Zbl

[3] L. Devroye, “On arbitrarily slow rates of global convergence in density estimation”, Z. Wahrsch. Verw. Gebiete, 62 (1983), 475–483 | DOI | MR | Zbl

[4] L. Devroye, A course in density estimation, Progress in Probability and Statistics, 14, Birkhäuser Boston, Inc., Boston, 1987 | MR | Zbl

[5] L. Devroye, “A note on the usefulness of superkernels in density estimation”, Ann. Statist., 20 (1992), 2037–2056 | DOI | MR | Zbl

[6] L. Devroye, L. Györfi, Nonparametric Density Estimation: The $L_1$ View, Wiley, New York, 1985 | MR | Zbl

[7] S. Yu. Efroimovich, M. S. Pinsker, “Estimation of square-integrable probability density of a random variable”, Problems Inform. Transmission, 18 (1982), 175–189 | MR

[8] G. B. Folland, Real Analysis, Wiley, New York, 1984 | MR | Zbl

[9] E. Giné, A. Zaitsev, D. M. Mason, “The $L_1$-norm density estimator process”, Ann. Probab., 31 (2003), 719–768 | DOI | MR | Zbl

[10] E. Guerre, A. Tsybakov, “Exact asymptotic minimax constants for the estimation of analytical functions in $L_p$”, Probab. Theory Related Fields, 112 (1998), 33–51 | DOI | MR | Zbl

[11] R. Hasminskii, I. Ibragimov, “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18 (1990), 999–1010 | DOI | MR | Zbl

[12] I. Ibragimov, R. Hasminskii, “On estimation of the density function”, Zap. Nauch. Sem. LOMI, 98, 1980, 61–85 | MR | Zbl

[13] I. Ibragimov, R. Hasminskii, “An estimate of the density of a distribution belonging to a class of entire functions”, Teor. Veroyatnost. i Primenen., 27 (1982), 514–524 | MR | Zbl

[14] W. B. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13 (1985), 234–253 | DOI | MR | Zbl

[15] M. Schipper, “Optimal rates and constants in $L_2$-minimax estimation of probability density functions”, Math. Methods Statist., 5 (1996), 253–274 | MR | Zbl

[16] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, John Wiley Sons, Inc., New York, 1986 | MR

[17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970 | MR

[18] T. J. Sweeting, “Speeds of convergence in the multidimensional central limit theorem”, Ann. Probab., 5 (1977), 28–41 | DOI | MR | Zbl

[19] M. Talagrand, “Isoperimetry and integrability of the sum of independent Banach-space valued random variables”, Ann. Probab., 17 (1989), 1546–1570 | DOI | MR | Zbl