On new developments in divergence statistics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 48-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we discuss measures of divergence and focus on a recently introduced measure of divergence, the so called BHHJ measure (Basu et. al, 1998). A general class of such measures is introduced and goodness of fit tests for multinomial populations are presented. Simulations are performed to check the appropriateness of the proposed test statistics. Bibl. – 20 titles.
@article{ZNSL_2009_363_a3,
     author = {K. Mattheou and A. Karagrigoriou},
     title = {On new developments in divergence statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--65},
     year = {2009},
     volume = {363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a3/}
}
TY  - JOUR
AU  - K. Mattheou
AU  - A. Karagrigoriou
TI  - On new developments in divergence statistics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 48
EP  - 65
VL  - 363
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a3/
LA  - en
ID  - ZNSL_2009_363_a3
ER  - 
%0 Journal Article
%A K. Mattheou
%A A. Karagrigoriou
%T On new developments in divergence statistics
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 48-65
%V 363
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a3/
%G en
%F ZNSL_2009_363_a3
K. Mattheou; A. Karagrigoriou. On new developments in divergence statistics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 48-65. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a3/

[1] A. Agresti, Analysis of Ordinal Categorical Data, John Wiley, 1984 | MR | Zbl

[2] S. M. Ali, S. D. Silvey, “A general class of coefficients of divergence of one distribution from another”, J. R. Statist. Soc. B, 28 (1966), 131–142 | MR | Zbl

[3] A. Basu, I. R. Harris, N. L. Hjort, M. C. Jones, “Robust and efficient estimation by minimising a density power divergence”, Biometrika, 85 (1998), 549–559 | DOI | MR | Zbl

[4] D. R. Cox, The Analysis of Binary Data, Methuen, London, 1970 | MR | Zbl

[5] N. Cressie, T. R. C. Read, “Multinomial goodness-of-fit tests”, J. R. Statist. Soc. B, 5 (1984), 440–464 | MR

[6] N. Cressie, T. R. C. Read, Goodness-of-Fit Statistics for Discrete Multivariate Data, Springer-Verlag, New York, 1988 | MR | Zbl

[7] I. Csiszar, “Eine informationstheoretische ungleichung and ihre anwendung auf den beweis der ergodizitat von markoffischen ketten”, Magyar Tud. Akad. Mat. Kutato Int. Kozl., 8 (1963), 85–108 | MR | Zbl

[8] I. Csiszar, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems”, Ann. Statist., 19 (1991), 2032–2066 | DOI | MR | Zbl

[9] D. Hunter, Lecture notes in Asymptotic Tools, Penn-State Univ., 2002

[10] L. K. Jones, C. L. Byrne, “General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis”, IEEE Trans. Info. Theory, 36 (1990), 23–30 | DOI | MR | Zbl

[11] A. M. Kagan, “On the theory of Fisher's amount of information”, Dokl. Akad. Nauk SSSR, 151 (1963), 277–278 | MR

[12] F. Liese, I. Vajda, Convex Statistical Distances, Teubner, Leipzig, 1987 | MR | Zbl

[13] K. Matusita, “On the notion of affinity of several distributions and some of its applications”, Ann. Inst. Statist. Math., 19 (1967), 181–192 | DOI | MR | Zbl

[14] D. Morales, L. Pardo, I. Vajda, “Some new statistics for testing hypotheses in parametric models”, J. Multivariate Anal., 62:1 (1997), 137–168 | DOI | MR | Zbl

[15] L. Pardo, “Generalized divergence measures: statistical applications”, Encyclopedia of Microcomputers, Marcel–Dekker, 1999, 163–191

[16] L. Pardo, Statistical inference based on divergence measures, Chapman and Hall/CRC, 2006 | MR | Zbl

[17] C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley, 1973 | MR | Zbl

[18] A. Renyi, “On measures of entropy and information”, Proc. 4th Berkeley Symp. on Math. Statist. Prob., V. 1, Univ. California Press, 1961, 547–561 | MR

[19] R. J. Serfling, Approximations Theorems of Mathematical Statistics, John Wiley, 1980 | MR | Zbl

[20] K. Zografos, K. Ferentinos, T. Papaioannou, “$\Phi$-divergence statistics: Sampling properties, multinomial goodness of fit and divergence tests”, Commun. Statist. Theory, Methods, 19:5 (1990), 1785–1802 | DOI | MR | Zbl