Estimation of reliability using failure-degradation data with explanatory variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 7-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Semiparametric estimation of degradation and failure process characteristics using degradation and multi-mode failure time data with covariates is considered supposing that the component of hazard rate related with observable degradation is unknown function of degradation and may depend on covariates. Bibl. – 17 titles.
@article{ZNSL_2009_363_a1,
     author = {V. Bagdonavi\v{c}ius and A. Bikelis and V. {\CYRM}. Kazakevi\v{c}ius and M. S. Nikulin},
     title = {Estimation of reliability using failure-degradation data with explanatory variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--25},
     year = {2009},
     volume = {363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a1/}
}
TY  - JOUR
AU  - V. Bagdonavičius
AU  - A. Bikelis
AU  - V. М. Kazakevičius
AU  - M. S. Nikulin
TI  - Estimation of reliability using failure-degradation data with explanatory variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 7
EP  - 25
VL  - 363
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a1/
LA  - en
ID  - ZNSL_2009_363_a1
ER  - 
%0 Journal Article
%A V. Bagdonavičius
%A A. Bikelis
%A V. М. Kazakevičius
%A M. S. Nikulin
%T Estimation of reliability using failure-degradation data with explanatory variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 7-25
%V 363
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a1/
%G en
%F ZNSL_2009_363_a1
V. Bagdonavičius; A. Bikelis; V. М. Kazakevičius; M. S. Nikulin. Estimation of reliability using failure-degradation data with explanatory variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–1, Tome 363 (2009), pp. 7-25. http://geodesic.mathdoc.fr/item/ZNSL_2009_363_a1/

[1] V. Bagdonavičius, M. Nikulin, Semiparametric Models in Accelerated Life Testing, Queen's Papers in Pure and Applied Mathematics, 98, Queen's University, Kingston, Canada, 1995 | MR | Zbl

[2] V. Bagdonavičius, M. Nikulin, “Estimation in degradation models with explanatory variables”, Lifetime Data Analysis, 7 (2001), 85–103 | DOI | MR | Zbl

[3] V. Bagdonavičius, M. Nikulin, Accelerated life models: Modeling and Statistical Analysis, Chapman and Hall/CRC, Boca Raton, 2002

[4] V. Bagdonavičius, A. Bikelis, V. Kazakevičius, M. Nikulin, “Analysis of joint multiple failure mode and linear degradation data with renewals”, Journal of Statistical Planning and Inference, 137 (2007), 2191–2207 | DOI | MR | Zbl

[5] D. R. Cox, “Partial likelihood”, Biometrika, 62 (1975), 2690–276 | MR

[6] M. Crowder, Classical Competing Risks, Chapman and Hall/CRC, Boca Raton, 1975

[7] P. Greenwood, M. Nikulin, A Guide to chi-squared testing, J. Wiley and Sons, New York, 1996 | MR | Zbl

[8] R. Henderson, P. Diggle, A. Dobson, “Joint modeling of longitudinal measurements and event time data”, Biostatistics, 1:4 (2000), 465–480 | DOI | Zbl

[9] J. Kalbfleisch, R. Prentice, The statistical analysis of failure time data, 2nd edition, John Wiley and Sons, New York, 2002 | MR

[10] N. Law, J. Taylor, H. Sandler, “The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure”, Biostatistics, 3:4 (2002), 547–563 | DOI | Zbl

[11] A. Lehmann, “On a degradation-failure models for repairable items”, Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality of Life, eds. Nikulin M., Balakrishnan N., Mesbah M., Limnios N., Birkhäuser, Boston, 2004, 65–80 | DOI | MR

[12] W. Q. Meeker, L. Escobar, Statistical analysis for reliability data, John Wiley and Sons, New York, 1998

[13] A. Tsiatis, M. Davidian, “Joint modeling of longitudinal and time-to-event data: an overview”, Statistica Sinica, 14 (2004), 809–834 | MR | Zbl

[14] A. Tsiatis, V. DeGruttola, M. Wulfsohn, “Modeling the relationship of survival to longitudinal data measured with error applications to survival and CD4 counts in patients with AIDS”, J. Amer. Statist. Assoc., 90 (1995), 27–37 | DOI | Zbl

[15] V. G. Voinov, M. Nikulin, Unbiased estimators and their applications. V. 1. Univariate case, Kluwer Avademic Publishers, Dordrecht, 1993 | MR | Zbl

[16] Y. Wang, J. Taylor, “Jointly modeling of longitudinal and event time data with applictions to acquired immunodeficiency syndrome”, J. Amer. Statist. Assoc., 96 (2001), 895–905 | DOI | MR | Zbl

[17] M. Wulfsohn, A. Tsiatis, “A joint model for survival and longitudinal data measured with error”, Biometrics, 53 (1997), 330–339 | DOI | MR | Zbl