A posteriori estimates for a generalized Stokes problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 272-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with a three-field formulation of a generalized Stokes problem related to viscous flow problems for fluids with polymeric chains. For the case of homogeneous Dirichlét boundary conditions, this model and the respective numerical methods were studied in [15]. In the present paper, we consider a generalized Stokes problem with variable viscosity and nonhomogeneous Dirichlét or mixed Dirichlét/Neumann boundary conditions and derive functional a posteriori error estimates for the velocity, pressure, and stress fields. The estimates are practically computable, sharp (i.e., have no gap between the left- and right-hand sides), and are valid for arbitrary functions from the respective functional classes. The estimates are derived by transformations of the integral identity that assigns the generalized solution (this method was suggested and used in [41,42] for certain classes of elliptic type problems). Error majorants are weighted sums of the terms penalizing violations of the constitutive, equilibrium, and divergence relations with weights defined by the constants in the Friederichs inequality and inf-sup (LBB) condition. Bibl. – 53 titles.
@article{ZNSL_2008_362_a9,
     author = {S. Repin and R. Stenberg},
     title = {A posteriori estimates for a~generalized {Stokes} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--302},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a9/}
}
TY  - JOUR
AU  - S. Repin
AU  - R. Stenberg
TI  - A posteriori estimates for a generalized Stokes problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 272
EP  - 302
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a9/
LA  - en
ID  - ZNSL_2008_362_a9
ER  - 
%0 Journal Article
%A S. Repin
%A R. Stenberg
%T A posteriori estimates for a generalized Stokes problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 272-302
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a9/
%G en
%F ZNSL_2008_362_a9
S. Repin; R. Stenberg. A posteriori estimates for a generalized Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 272-302. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a9/

[1] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley and Sons, New York, 2000 | MR | Zbl

[2] M. Amara, M. Ben Younes, C. Bernardi, “Error indicators for the Navier–Stokes equations in stream function and vorticity formulation”, Numer. Math., 80 (1998), 181–206 | DOI | MR | Zbl

[3] R. E. Bank, B. D. Welfert, “A posteriori error estimates for the Stokes problem”, SIAM J. Numer. Anal., 28 (1991), 591–623 | DOI | MR | Zbl

[4] I. Babuška, “The finite element method with Lagrangian multipliers”, Numer. Math., 20 (1973), 179–192 | DOI | MR | Zbl

[5] I. Babuška, A. K. Aziz, “Surway lectures on the mathematical foundations of the finite element method”, The mathematical formulations of the finite element method with applications to partial differential equations, Academic Press, New York, 1972, 5–359 | MR

[6] I. Babuška, W. C. Rheinboldt, “A-posteriori error estimates for the finite element method”, Internat. J. Numer. Meth. Engrg., 12 (1978), 1597–1615 | DOI | Zbl

[7] I. Babuška, W. C. Rheinboldt, “Error estimates for adaptive finite element computations”, SIAM J. Numer. Anal., 15 (1978), 736–754 | DOI | MR | Zbl

[8] I. Babuška, T. Strouboulis, The finite element method and its reliability, Oxford University Press, New York, 2001 | MR | Zbl

[9] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl

[10] R. E. Bank, B. D. Welfert, “A posteriori error estimates for the Stokes problem”, SIAM J. Numer. Anal., 28:3 (1991), 591–623 | DOI | MR | Zbl

[11] A. Bermúdez, R. Durán, R. Rodríguez, “Finite element analysis of compressible and incompressible fluid-solid systems”, Math. Comput., 67:221 (1998), 111–136 | DOI | MR | Zbl

[12] C. Bernardi, R. Verfurth, “A posteriori error analysis of the fully discretized time-dependent Stokes equations”, M2AN Math. Model. Numer. Anal., 38:3 (2004), 437–455 | DOI | MR | Zbl

[13] M. Bildhauer, M. Fuchs, S. Repin, “A posteriori error estimates for stationary slow flows of power-law fluids”, Intern. J. Non-Newtonian Fluids (to appear)

[14] J. Bramble, “A proof of the inf-sup condition for the Stokes equations on Lipschitz domains”, Math. Models Methods Appl. Sci., 13:3 (2003), 361–371 | DOI | MR | Zbl

[15] J. Bonvin, M. Picasso, R. Stenberg, “GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows”, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3893–3914 | DOI | MR | Zbl

[16] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, RAIRO Annal. Numer., 8:R-2 (1974), 129–151 | MR | Zbl

[17] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer, New York, 1991 | MR | Zbl

[18] M. Dobrowolski, “On the LBB constant on stretched domains”, Math. Nachr., 254–255 (2003), 64–67 | DOI | MR | Zbl

[19] I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland, New York, 1976 | MR | Zbl

[20] M. Feistauer, Mathematical methods in fluid dynamics, Longman, Harlow, 1993 | Zbl

[21] L. P. Franca, J. Karam Filho, A. F. D. Loula, R. Stenberg, “A convergence analysis of a stabilized method for the Stokes flow”, Mat. Apl. Comput., 10:1 (1991), 19–26 | MR | Zbl

[22] M. Fuchs, S. Repin, “Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids”, Math. Methods Appl. Sci., 29 (2006), 2225–2244 | DOI | MR | Zbl

[23] G. P. Galdi, J. H. Heywood, R. Rannacher (eds.), Fundamental directions in mathematical fluid mechanics, Birkhäuser, Basel–Boston–Berlin, 2000 | MR | Zbl

[24] V. Girault, P. A. Raviart, Finite element approximation of the Navier–Stokes equations, Springer, Berlin, 1986 | MR | Zbl

[25] R. Glowinski, O. Pironneau, “Numerical Methods for the First Biharmonic Equation and for the Two-Dimensional Stokes Problem”, SIAM Review, 21:2 (1999), 167–212 | DOI | MR

[26] E. Gorshkova, P. Neittaanmaki, S. Repin, “Comparative study of a posteriori error estimates for the Stokes problem”, Proc. of 6th European Conference on Numerical Mathematics and Advanced Applications (Santiago de Compostela, 2005), Springer, Berlin, 2006, 255–262 | MR

[27] C. Johnson, P. Hansbo, “Adaptive finite elements in computational mechanics”, Comput. Methods Appl. Mech. Engrg., 101 (1992), 143–181 | DOI | MR | Zbl

[28] C. Johnson, R. Rannacher, M. Boman, “Numerics in hydrodynamic stability. Towards error control in CFD”, SIAM J. Numer. Anal., 32 (1995), 1058–1079 | DOI | MR | Zbl

[29] D. Kay, D. Silvester, “A-posteriori error estimation for stabilised mixed approximations of the Stokes equations”, SIAM J. Sci. Comput., 21:4 (2000), 1321–1336 | DOI | MR | Zbl

[30] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969 | MR | Zbl

[31] O. Ladyzhenskaya, V. Solonnikov, “Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equation”, Zap. Nauchn. Semin. LOMI, 59, 1976, 81–116 | MR | Zbl

[32] P. Neittaanmäki, S. Repin, Reliable methods for computer simulation. Error control and a posteriori estimates, Elsevier, New York, 2004 | MR | Zbl

[33] J. T. Oden, W. Wu, M. Ainsworth, “An a posteriori error estimate for finite element approximations of the Navier–Stokes equations”, Comput. Methods. Appl. Mech. Engrg., 111 (1994), 185–202 | DOI | MR | Zbl

[34] M. Olshanskii, E. Chizhonkov, “On the best constant in the inf sup condition for prolonged rectangular domains”, Mat. Zametki, 67:3 (2000), 387–396 | MR | Zbl

[35] C. Padra, “A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows”, SIAM J. Numer. Anal., 34 (1997), 1600–1615 | DOI | MR | Zbl

[36] J. Pousin, J. Rappaz, “Consistance, stabilité, erreurs a priori et a posteriori pour des problémes non linéaries”, C. R. Acad. Sci. Paris, 312 (1991), 699–703 | MR | Zbl

[37] R. Rannacher, “Finite element methods for the incompressible Navier–Stokes equations”, Fundamental directions in mathematical fluid mechanics, ed. G. P. Galdi, Birkhauser, Basel, 2000, 191–293 | MR | Zbl

[38] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin. POMI, 243, 1997, 201–214 | MR | Zbl

[39] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | MR | Zbl

[40] S. Repin, “A unified approach to a posteriori error estimation based on duality error majorants”, Mathematics and Computers in Simulation, 50 (1999), 313–329 | DOI | MR

[41] S. Repin, “Two-Sided estimates of deviation from exact solutions of uniformly elliptic equations”, Amer. Math. Soc. Transl. Ser. 2, 209 (2003), 143–171 | MR

[42] S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition”, Algebra and Analiz, 16:5 (2004), 124–161 | MR

[43] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci. (New York), 109:5 (2002), 1950–1964 | DOI | MR

[44] S. Repin, S. Sauter, A. Smolianski, “A posteriori error estimation for the Dirichlét problem with account of the error in the approximation of boundary conditions”, Computing, 70 (2003), 205–233 | MR | Zbl

[45] S. Repin, R. Stenberg, “A posteriori error estimates for the generalized Stokes problem”, J. Math. Sci. (New York), 142:1 (2007), 1828–1843 | DOI | MR | Zbl

[46] T. Strouboulis, J. T. Oden, “A posteriori error estimation of finite element approximations in fluid mechanics”, Comput. Meth. Appl. Mech. Engrg., 78 (1990), 201–242 | DOI | MR | Zbl

[47] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979 | MR | Zbl

[48] S. Turek, Efficient solvers for incompressible flow problems: An algorythmic and computational approach, Springer, Berlin, 1999 | MR

[49] R. Verfürth, “A posteriori error estimators for the Stokes equations”, Numer. Math., 55 (1989), 309–326 | DOI | MR

[50] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley and Sons, Teubner, New-York, 1996 | MR | Zbl

[51] J. Wang, X. Ye, “Superconvergence analysis for the Navier–Stokes equations”, Appl. Numer. Math., 41 (2002), 515–527 | DOI | MR | Zbl

[52] K. Yosida, Functional Analysis, Springer, New York, 1996

[53] S. Repin, A posteriori estimates for partial differential equation, Walter de Gryter, Berlin–New York, 2008 | MR