@article{ZNSL_2008_362_a8,
author = {S. A. Nazarov and M. Specovius-Neugebauer},
title = {Singularities at the tip of a~crack on the interface of piezoelectric bodies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {241--271},
year = {2008},
volume = {362},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/}
}
TY - JOUR AU - S. A. Nazarov AU - M. Specovius-Neugebauer TI - Singularities at the tip of a crack on the interface of piezoelectric bodies JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 241 EP - 271 VL - 362 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/ LA - ru ID - ZNSL_2008_362_a8 ER -
S. A. Nazarov; M. Specovius-Neugebauer. Singularities at the tip of a crack on the interface of piezoelectric bodies. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 241-271. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/
[1] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle Dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:10 (1970), 1831–1843
[2] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 13:11 (1977), 2026–2032 | MR
[3] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi rebra”, Dokl. AN SSSR, 229:1 (1976), 33–36
[4] V. G. Mazya, B. A. Plamenevskii, “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Trudy seminara S. L. Soboleva, 2, izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR
[5] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl
[6] S. A. Nazarov, “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 1989, no. 2, 152–160
[7] S. A. Nazarov, O. R. Polyakova, “Ob ekvivalentnosti kriteriev razrusheniya dlya treschiny otryva v uprugom prostranstve”, Mekhanika tverdogo tela, 1992, no. 2, 101–113
[8] L. K. Kolton, S. A. Nazarov, “Variatsiya formy rebra ploskoi lokalno neravnovesnoi treschiny normalnogo otryva”, Mekhanika tverdogo tela, 1997, no. 3, 125–133
[9] S. A. Nazarov, “O trekhmernoi formulirovke kriteriya Novozhilova kvazistaticheskogo razrusheniya”, Mekhanika tverdogo tela, 2006, no. 2, 107–116
[10] G. C. Sih, H. Liebowitz, “Mathematical theories of brittle fracture”, Fracture, Vol. 2, ed. Liebowitz H., Academic Press, New-York, 1968, 67–190
[11] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[12] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[13] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82
[14] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[15] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[16] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl
[17] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR
[18] V. Z. Parton, B. A. Kudryavtsev, Elektrouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988
[19] V. T. Grinchenko, A. F. Ulitko, N. A. Shulga, Mekhanika svyaznykh polei v elementakh konstruktsii, Nauk. Dumka, Kiev, 1989 | Zbl
[20] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[21] M. Costabel, M. Dauge, “Crack singularities for general elliptic systems”, Math. Nachr., 235 (2002), 29–49 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] H. G. Beom, S. N. Atluri, “Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media”, Intern. J. Fracture, 75 (1996), 163–183 | DOI
[23] H. G. Beom, S. N. Atluri, “Conducting cracks in dissimilar piezoelectric media”, Intern. J. Fracture, 118 (2002), 285–301 | DOI
[24] S. A. Nazarov, “Vesovye funktsii i invariantnye integraly”, Vychislitelnaya mekhanika deformiruemogo tverdogo tela, 1990, no. 1, 17–31
[25] S. A. Nazarov, “Treschina na styke anizotropnykh tel. Singulyarnosti napryazhenii i invariantnye integraly”, Prikl. matem. i mekhanika, 62:3 (1998), 489–502
[26] S. A. Nazarov, O. R. Polyakova, “Kriterii razrusheniya, asimptoticheskie usloviya v vershinakh treschin i samosopryazhennye rasshireniya operatora Lame”, Trudy Moskovskogo matem. obschestva, 57, 1996, 16–75 | MR
[27] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[28] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967
[29] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[30] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Birkhäuser, Basel, 2000
[31] H. F. Bueckner, “A novel principle for the computation of stress intensity factor”, ZAMM, 50 (1976), 529–546 | MR
[32] J. R. Rice, “Some remarks on elastic crack-tip stress field”, J. Solids and Structures, 8 (1972), 751–758 | DOI | Zbl
[33] Z. Suo, C.-M. Kuo, D. M. Barnett, J. R. Willis, “Fracture mechanics for piezoelectric ceramics”, J. Mech. Phys. Solids, 40:4 (1992), 739–765 | DOI | MR | Zbl
[34] I. I. Argatov, S. A. Nazarov, “Vysvobozhdenie energii pri izlome treschiny v ploskom anizotropnom tele”, Prikl. matem. i mekhanika, 66:3 (2002), 502–514 | MR | Zbl
[35] C. Park, C. T. Sun, “Fracture criteria for piezoelectric ceramics”, J. Amer. Ceram. Soc., 78 (1995), 1475–1480 | DOI
[36] H. Gao, T.-Y. Zhang, P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramics”, J. Mech. Phys. Solids, 45:4 (1997), 491–510 | DOI
[37] A. A. Kulikov, S. A. Nazarov, “Formula Griffitsa dlya treschiny v pezoelektricheskom tele”, Doklady RAN, 399:6 (2004), 770–774 | MR
[38] A. A. Kulikov, S. A. Nazarov, “Treschiny v pezoelektricheskikh i elektroprovodyaschikh telakh”, Sibirskii zhurnal industrialnoi matematiki, 8:1 (2005), 70–87 | MR
[39] S. A. Nazarov, “Koeffitsienty intensivnosti napryazhenii i usloviya deviatsii treschiny v khrupkom anizotropnom tele”, Prikl. mekhanika i tekhnicheskaya fizika, 46:3 (2005), 98–107 | MR | Zbl
[40] S. A. Nazarov, “Bazisy singulyarnykh reshenii v zadachakh mekhaniki treschin”, Vestnik SPbGU. Ser. 1, 2008, no. 4 (to appear)
[41] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[42] T. C. Wang, X. L. Han, “Fracture mechanics for piezoelectric materials”, Intern. J. Fracture, 98 (1999), 15–35 | DOI
[43] S. A. Nazarov, “Poverkhnostnaya entalpiya”, Doklady RAN, 421:1 (2008), 49–53 | MR | Zbl
[44] S. A. Nazarov, O. R. Polyakova, “Vesovye funktsii i invariantnye integraly vysshikh poryadkov”, Mekhanika tverdogo tela, 1995, no. 1, 104–119