Singularities at the tip of a crack on the interface of piezoelectric bodies
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 241-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezoelectric media under various boundary conditions on the crack surfaces. The singularity exponents form the spectrum of a certain polynomial pencil, and although explicit formulas are not available, this spectrum is described completely though. The mathematical results apply to problems in the mechanics of fracture. In this way the Griffith formulae are obtained for increments of energy functionals due to the growth of the crack and the notion of the energy release matrix is introduced. Normalization conditions for bases of singular solutions are proposed to adapt them to the energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional properties of the deformation basis related to the notion of electric surface enthalpy are established. Bibl. – 44 titles.
@article{ZNSL_2008_362_a8,
     author = {S. A. Nazarov and M. Specovius-Neugebauer},
     title = {Singularities at the tip of a~crack on the interface of piezoelectric bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {241--271},
     year = {2008},
     volume = {362},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. Specovius-Neugebauer
TI  - Singularities at the tip of a crack on the interface of piezoelectric bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 241
EP  - 271
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/
LA  - ru
ID  - ZNSL_2008_362_a8
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. Specovius-Neugebauer
%T Singularities at the tip of a crack on the interface of piezoelectric bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 241-271
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/
%G ru
%F ZNSL_2008_362_a8
S. A. Nazarov; M. Specovius-Neugebauer. Singularities at the tip of a crack on the interface of piezoelectric bodies. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 241-271. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a8/

[1] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle Dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:10 (1970), 1831–1843

[2] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 13:11 (1977), 2026–2032 | MR

[3] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi rebra”, Dokl. AN SSSR, 229:1 (1976), 33–36

[4] V. G. Mazya, B. A. Plamenevskii, “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Trudy seminara S. L. Soboleva, 2, izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR

[5] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl

[6] S. A. Nazarov, “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 1989, no. 2, 152–160

[7] S. A. Nazarov, O. R. Polyakova, “Ob ekvivalentnosti kriteriev razrusheniya dlya treschiny otryva v uprugom prostranstve”, Mekhanika tverdogo tela, 1992, no. 2, 101–113

[8] L. K. Kolton, S. A. Nazarov, “Variatsiya formy rebra ploskoi lokalno neravnovesnoi treschiny normalnogo otryva”, Mekhanika tverdogo tela, 1997, no. 3, 125–133

[9] S. A. Nazarov, “O trekhmernoi formulirovke kriteriya Novozhilova kvazistaticheskogo razrusheniya”, Mekhanika tverdogo tela, 2006, no. 2, 107–116

[10] G. C. Sih, H. Liebowitz, “Mathematical theories of brittle fracture”, Fracture, Vol. 2, ed. Liebowitz H., Academic Press, New-York, 1968, 67–190

[11] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292

[12] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[13] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82

[14] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[15] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[16] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[17] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR

[18] V. Z. Parton, B. A. Kudryavtsev, Elektrouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988

[19] V. T. Grinchenko, A. F. Ulitko, N. A. Shulga, Mekhanika svyaznykh polei v elementakh konstruktsii, Nauk. Dumka, Kiev, 1989 | Zbl

[20] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[21] M. Costabel, M. Dauge, “Crack singularities for general elliptic systems”, Math. Nachr., 235 (2002), 29–49 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] H. G. Beom, S. N. Atluri, “Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media”, Intern. J. Fracture, 75 (1996), 163–183 | DOI

[23] H. G. Beom, S. N. Atluri, “Conducting cracks in dissimilar piezoelectric media”, Intern. J. Fracture, 118 (2002), 285–301 | DOI

[24] S. A. Nazarov, “Vesovye funktsii i invariantnye integraly”, Vychislitelnaya mekhanika deformiruemogo tverdogo tela, 1990, no. 1, 17–31

[25] S. A. Nazarov, “Treschina na styke anizotropnykh tel. Singulyarnosti napryazhenii i invariantnye integraly”, Prikl. matem. i mekhanika, 62:3 (1998), 489–502

[26] S. A. Nazarov, O. R. Polyakova, “Kriterii razrusheniya, asimptoticheskie usloviya v vershinakh treschin i samosopryazhennye rasshireniya operatora Lame”, Trudy Moskovskogo matem. obschestva, 57, 1996, 16–75 | MR

[27] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[28] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[29] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[30] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Birkhäuser, Basel, 2000

[31] H. F. Bueckner, “A novel principle for the computation of stress intensity factor”, ZAMM, 50 (1976), 529–546 | MR

[32] J. R. Rice, “Some remarks on elastic crack-tip stress field”, J. Solids and Structures, 8 (1972), 751–758 | DOI | Zbl

[33] Z. Suo, C.-M. Kuo, D. M. Barnett, J. R. Willis, “Fracture mechanics for piezoelectric ceramics”, J. Mech. Phys. Solids, 40:4 (1992), 739–765 | DOI | MR | Zbl

[34] I. I. Argatov, S. A. Nazarov, “Vysvobozhdenie energii pri izlome treschiny v ploskom anizotropnom tele”, Prikl. matem. i mekhanika, 66:3 (2002), 502–514 | MR | Zbl

[35] C. Park, C. T. Sun, “Fracture criteria for piezoelectric ceramics”, J. Amer. Ceram. Soc., 78 (1995), 1475–1480 | DOI

[36] H. Gao, T.-Y. Zhang, P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramics”, J. Mech. Phys. Solids, 45:4 (1997), 491–510 | DOI

[37] A. A. Kulikov, S. A. Nazarov, “Formula Griffitsa dlya treschiny v pezoelektricheskom tele”, Doklady RAN, 399:6 (2004), 770–774 | MR

[38] A. A. Kulikov, S. A. Nazarov, “Treschiny v pezoelektricheskikh i elektroprovodyaschikh telakh”, Sibirskii zhurnal industrialnoi matematiki, 8:1 (2005), 70–87 | MR

[39] S. A. Nazarov, “Koeffitsienty intensivnosti napryazhenii i usloviya deviatsii treschiny v khrupkom anizotropnom tele”, Prikl. mekhanika i tekhnicheskaya fizika, 46:3 (2005), 98–107 | MR | Zbl

[40] S. A. Nazarov, “Bazisy singulyarnykh reshenii v zadachakh mekhaniki treschin”, Vestnik SPbGU. Ser. 1, 2008, no. 4 (to appear)

[41] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[42] T. C. Wang, X. L. Han, “Fracture mechanics for piezoelectric materials”, Intern. J. Fracture, 98 (1999), 15–35 | DOI

[43] S. A. Nazarov, “Poverkhnostnaya entalpiya”, Doklady RAN, 421:1 (2008), 49–53 | MR | Zbl

[44] S. A. Nazarov, O. R. Polyakova, “Vesovye funktsii i invariantnye integraly vysshikh poryadkov”, Mekhanika tverdogo tela, 1995, no. 1, 104–119