@article{ZNSL_2008_362_a7,
author = {P. Maremonti},
title = {Stokes and {Navier{\textendash}Stokes} problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--240},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/}
}
TY - JOUR AU - P. Maremonti TI - Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 176 EP - 240 VL - 362 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/ LA - en ID - ZNSL_2008_362_a7 ER -
%0 Journal Article %A P. Maremonti %T Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 176-240 %V 362 %U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/ %G en %F ZNSL_2008_362_a7
P. Maremonti. Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 176-240. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/
[1] Zap. Nauch. Sem. POMI, 318, 2004, 147–202 | DOI | MR | Zbl
[2] W. Desch, M. Hieber, J. Prüss, “$L^p$-Theory of the Stokes equation in a half space”, J. Evol. Equation, 1 (2001), 115–142 | DOI | MR | Zbl
[3] G. P. Galdi, P. Maremonti, “A uniquenesss theorem for viscous fluid motions in exterior domains”, Arch. Ratioanl Mech. Anal., 91 (1986), 375–384 | DOI | MR | Zbl
[4] G. P. Galdi, S. Rionero, “On the best conditions on the gradient of pressure for uniqueness of viscous flows in the whole space”, Pac. J. Math., 104 (1983), 77–83 | MR | Zbl
[5] Y. Giga, K. Inui, Sh. Matsui, “On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data”, Quad. Mat., 4 (1999), 27–68 | MR | Zbl
[6] J. Kato, “The uniqueness of nondecaying solutions for the Navier–Stokes equations”, Arch. Rational Mech. Anal., 169 (2003), 159–175 | DOI | MR | Zbl
[7] M. Hieber, A. Rhandi, O. Sawada, “The Navier-Stokes flow for globally Lipschitz continuous initial data” (to appear)
[8] M. Hieber, O. Sawada, “The Navier–Stokes equations in $\mathbb R^n$ with linearly growing initial data”, Arch. Rational Mech. Anal., 175 (2005), 269–285 | DOI | MR | Zbl
[9] G. H. Knightly, “A note on the Cauchy problem for the Navier–Stokes equations”, SIAM J. Appl. Math., 18 (1970), 641–644 | DOI | MR | Zbl
[10] G. H. Knightly, Stability of uniform solutions of the Navier–Stokes equations in $n$-dimensions, Math. Research Center Technical Summary Report # 1085, Wisconsin University, 1971
[11] H. Koch, V. A. Solonnikov, “$L_q$-estimtes of the first-order derivatives of solutions to the nonstationary Stokes problem”, Nonlinear problems of mathematical physics and related topics, V. I, International Math. Series, 1, Kluwer Academic, Plenum Publisher, New York, 2002, 203–218 | MR | Zbl
[12] O. A. Ladyzhenskaya, N. N. Uralceva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968 | MR | Zbl
[13] P. Maremonti, G. Starita, “On the nonstationary Stokes equations in half-space with continuous initial data”, Zap. Nauch. Sem. POMI, 295, 2003, 118–167 | MR | Zbl
[14] P. Maremonti, “On the uniqueness of bounded weak solutions to the Navier–Stokes Cauchy problem” (to appear)
[15] P. Muratori, “Su un problema esterno relativo alle equazioni di Navier–Stokes”, Rend. Sem. Mat. Univ. Padova, 46 (1971), 53–100 | MR
[16] O. Sawada, T. Usui, “The Navier–Stokes equations for linearly growing velocity with nondecaying initial disturbance” (to appear)
[17] V. A. Solonnikov, “Estimates for solutions to the nonstationary Navier–Stokes equations”, Zap. Nauch. Sem. LOMI, 38, 1973, 153–231 | MR | Zbl
[18] V. A. Solonnikov, “Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator”, Usp. Mat. Nauk, 58:2 (2003), 123–156 | MR | Zbl
[19] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity”, J. Math. Sci., 114 (2003), 1726–1740 | DOI | MR | Zbl
[20] V. A. Solonnikov, “Weighted Schauder estimates for evolution Stokes problem”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 137–172 | DOI | MR | Zbl