Stokes and Navier--Stokes problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 176-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Cauchy problem and the initial boundary value problem in the half-space of the Stokes and Navier–Stokes equations. We furnish existence and uniqueness of classical solutions $(u,\pi)$ (meaning at least $C^2\times C^1$ smooth with respect to the space variable and $C^1\times C^0$ smooth with respect to the time variable) without requiring of convergence at infinity. A priori the fields $u$ and $\pi$ are nondecreasing at infinity. In the case of the Stokes problem we prove the existence, for any $t>0$, and uniqueness of solutions with kinetic field $u=O([1+t^\frac\beta2][1+|x|^\beta])$ and pressure field $\pi=O([1+t^\frac\beta2][1+|x|^\beta]|x|^\gamma)$, for some $\beta\in(0,1)$ and $\gamma\in(0,1-\beta)$. In the case of the Navier–Stokes equations we prove the existence (local in time) and the uniqueness of classical solutions to the Navier–Stokes equations assuming an initial data only continuous and bounded, proving that, for any $t\in(0,T)$, the kinetic field $u(x,t)$ is bounded and, for any $\gamma\in(0,1)$, the pressure field $\pi(x,t)=O(1+|x|^\gamma)$. Bibl. – 20 titles.
@article{ZNSL_2008_362_a7,
     author = {P. Maremonti},
     title = {Stokes and {Navier--Stokes} problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--240},
     publisher = {mathdoc},
     volume = {362},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/}
}
TY  - JOUR
AU  - P. Maremonti
TI  - Stokes and Navier--Stokes problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 176
EP  - 240
VL  - 362
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/
LA  - en
ID  - ZNSL_2008_362_a7
ER  - 
%0 Journal Article
%A P. Maremonti
%T Stokes and Navier--Stokes problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 176-240
%V 362
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/
%G en
%F ZNSL_2008_362_a7
P. Maremonti. Stokes and Navier--Stokes problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 176-240. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a7/