@article{ZNSL_2008_362_a6,
author = {Sh. Itoh and N. Tanaka and A. Tani},
title = {Stability of steady-states solution to {Navier{\textendash}Stokes} equations with general {Navier} slip boundary condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--175},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a6/}
}
TY - JOUR AU - Sh. Itoh AU - N. Tanaka AU - A. Tani TI - Stability of steady-states solution to Navier–Stokes equations with general Navier slip boundary condition JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 153 EP - 175 VL - 362 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a6/ LA - en ID - ZNSL_2008_362_a6 ER -
%0 Journal Article %A Sh. Itoh %A N. Tanaka %A A. Tani %T Stability of steady-states solution to Navier–Stokes equations with general Navier slip boundary condition %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 153-175 %V 362 %U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a6/ %G en %F ZNSL_2008_362_a6
Sh. Itoh; N. Tanaka; A. Tani. Stability of steady-states solution to Navier–Stokes equations with general Navier slip boundary condition. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 153-175. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a6/
[1] S. Agmon, A. Douglis, L. Nirenberg,, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12 (1959), 623–727 ; “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, 17 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl
[2] R. Farwig, “Stationary solutions of compressible Navier–Stokes equations with slip boundary condition”, Comm. Partial Differential Equations, 14 (1989), 1579–1606 | DOI | MR | Zbl
[3] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I. Linearized Steady Problems, Springer, Heiderberg–New York, 1994 | MR
[4] S. Goldstein (ed.), Modern Developments in Fluid Dynamics, Vol. 2, Dover, New York, 1965
[5] S. Itoh, N. Tanaka, A. Tani, “The initial value problem for the Navier–Stokes equations with general slip boundary condition in Hölder spaces”, J. Math. Fluid Mech., 5 (2003), 275–301 | MR | Zbl
[6] S. Itoh, A. Tani, “The initial value problem for the non-homogeneous Navier–Stokes equations with general slip boundary condition”, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 827–835 | DOI | MR | Zbl
[7] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, Gordon and Breach, 1969 | MR | Zbl
[8] C. L. M. H. Navier, “Mémoire sur les lois du mouvement des fluides”, Mém. Acad. Sci. Inst. France, 6 (1823), 389–440
[9] V. V. Pukhnachov, “Plane steady-state problem with a free boundary for the Navier–Stokes equations”, Zh. Prikl. Mech. Techn. Fiz., 13 (1972), 91–102
[10] J. Serrin, “Mathematical principles of classical fluid mechanics”, Handbuch der Physik, VIII/1, Springer, Berlin, 1959, 125–263 | MR
[11] V. A. Solonnikov, “General boundary value problems for systems elliptic in the sence of A. Douglis and L. Nirenberg. I”, Amer. Math. Soc. Transl. (2), 56 (1966), 193–232 ; “General boundary value problems for systems elliptic in the sence of A. Douglis and L. Nirenberg. II”, Proc. Steklov Inst. Math., 92, 1968, 269–339 | MR | Zbl
[12] V. A. Solonnikov, “Unsteady motion of a finite mass of fluid, bounded by a free surface”, J. Soviet Math., 40 (1988), 672–686 | DOI | MR | Zbl
[13] V. A. Solonnikov, V. E. Sčadilov, “On a boundary value problem for a stationary system of Navier–Stokes equations”, Proc. Steklov Inst. Math., 125, 1973, 196–210 | MR | Zbl
[14] A. Tani, S. Itoh, N. Tanaka, “The initial value problem for the Navier–Stokes equations with general slip boundary condition”, Adv. Math. Sci. Appl., 4 (1994), 51–69 | MR | Zbl
[15] A. Tani, “The initial value problem for the equations of motion of general fluid with general slip boundary condition”, Kôkyuroku, RIMS (Kyoto Univ.), 734 (1990), 123–142 | MR
[16] L. R. Volevic, “Solvability of boundary value problem for general elliptic systems”, Amer. Math. Soc. Transl. (2), 67 (1968), 182–225 | Zbl