Special global regular solutions to the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 120-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present the existence results of global regular solutions to the Navier–Stokes equations which are close either to two-dimensional or to axially-symmetric solutions. We assume the slip-boundary conditions. Moreover, the considered domains are either cylindrical or axially symmetric. We examine problems with and without inflow-outflow. All proofs can be divided into two steps: 1. long time existence by either the Leray–Schauder fixed point theorem or the method of successive approximations, 2. global existence by prolongation of the local solution with respect to time. Bibl. – 32 titles.
@article{ZNSL_2008_362_a5,
     author = {W. M. Zaj\k{a}czkowski},
     title = {Special global regular solutions to the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--152},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/}
}
TY  - JOUR
AU  - W. M. Zajączkowski
TI  - Special global regular solutions to the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 120
EP  - 152
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/
LA  - en
ID  - ZNSL_2008_362_a5
ER  - 
%0 Journal Article
%A W. M. Zajączkowski
%T Special global regular solutions to the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 120-152
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/
%G en
%F ZNSL_2008_362_a5
W. M. Zajączkowski. Special global regular solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 120-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/

[1] O. A. Ladyzhenskaya, “Solutions “in the large” of the nonstationary boundary value problem for the Navier–Stokes system with two space variables”, Comm. Pure Appl. Math., 12 (1959), 427–433 | DOI | MR | Zbl

[2] O. A. Ladyzhenskaya, “On unique solvability of three-dimensional Cauchy problem for the Navier–Stokes equations under the axial symmetry”, Zap. Nauchn. Semin. LOMI, 7, 1968, 155–177 | MR | Zbl

[3] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Nauka, Moscow, 1970 | MR

[4] M. R. Ukhovskij, V. I. Yudovich, “Axially symmetric motions of ideal and viscous fluids filling all space”, Prikl. Mat. Mekh., 32 (1968), 59–69 | MR

[5] W. M. Zajączkowski, “Some global regular solutions to Navier–Stokes equations”, Math. Meth. Appl. Sci., 30 (2007), 123–151 | DOI | MR | Zbl

[6] M. Wiegner, W. M. Zajączkowski, “On stability of axially symmetric solutions to Navier–Stokes equations in a cylindrical domain and with slip boundary conditions”, Proc. Banach Center, 70, 2005, 251–278 | MR | Zbl

[7] W. M. Zajączkowski, “Long time existence of regular solutions to Navier–Stokes equations in cylindrical domains under boundary slip conditions”, Studia Math., 169 (2005), 243–285 | DOI | MR | Zbl

[8] V. A. Solonikov, V. E. Shchadilov, “On a boundary value problem for a stationary system of the Navier–Stokes equations”, Trudy Mat. Inst. Steklov, 125, 1973, 196–210 | MR

[9] W. M. Zajączkowski, “Global existence of axially symmetric solutions of incompressible Navier–Stokes equations with large angular component of velocity”, Colloq. Math., 100 (2004), 243–263 | DOI | MR | Zbl

[10] J. Rencławowicz, W. M. Zajączkowski, “Large time regular solutions to the Navier–Stokes equations in cylindrical domains”, Top. Meth. Nonlin. Anal., 32 (2008), 69–87 | MR | Zbl

[11] W. M. Zajączkowski, “Global special regular solutions to the Navier–Stokes equations in a cylindrical domain without the axis of symmetry”, Top. Meth. Nonlin. Anal., 24 (2004), 69–105 | MR | Zbl

[12] V. A. Solonnikov, “Estimates for solutions to nonstationary linearized Navier–Stokes system”, Trudy Steklov Math. Inst., 70, 1964, 213–317 | MR | Zbl

[13] W. M. Zajączkowski, “Global regular nonstationary flow for the Navier–Stokes equations in a cylindrical pipe”, Top. Meth. Nonlin. Anal., 26 (2005), 221–286 | MR | Zbl

[14] P. Kacprzyk, “Global regular nonstationary flow for the Navier–Stokes equations in a cylindrical pipe”, Appl. Math., 34 (2007), 289–307 | MR | Zbl

[15] W. M. Zajączkowski, “Global regular solutions to the Navier–Stokes equations in a cylinder”, Banach Center Publ., 74, 2006, 235–255 | MR | Zbl

[16] W. M. Zajączkowski, “Global special regular solutions to the Navier–Stokes equations in a cylindrical domain under boundary slip conditions”, Gakuto Series Math., 21 (2004), 1–188

[17] W. M. Zajączkowski, “Existence of solutions to the nonstationary Stokes system in $H_{-\mu}^{2,1}$, $\mu\in(0,1)$, in a domain with a distinguished axis. I. Existence near the axis in 2d”, Appl. Math., 34 (2007), 121–141 | MR | Zbl

[18] W. M. Zajączkowski, “Existence of solutions to the nonstationary Stokes system in $H_{-\mu}^{2,1}$, $\mu\in(0,1)$, in a domain with a distinguished axis. II. Estimate in the 3d case”, Appl. Math., 34 (2007), 143–167 | MR | Zbl

[19] E. Zadrzyńska, W. M. Zajączkowski, “Solvability of the Poisson equation in weighted Sobolev spaces”, Appl. Math. (to appear)

[20] E. Zadrzyńska, W. M. Zajączkowski, “Nonstationary Stokes system in weighted Sobolev spaces” (to appear)

[21] B. Nowakowski, W. M. Zajączkowski, “Global existence of solutions to Navier–Stokes equations in cylindrical domains”, Appl. Math. (to appear)

[22] B. Nowakowski, W. M. Zajączkowski, “Global attractor for Navier–Stokes equations in cylindrical domains”, Appl. Math. (to appear)

[23] P. Kacprzyk, “Global existence for inflow-outflow problem for the Navier–Stokes equations in a cylinder”, Appl. Math. (to appear)

[24] P. Kacprzyk, “Global attractor for the Navier–Stokes equations in a cylindrical pipe”, Annales Polon. Math. (to appear)

[25] W. M. Zajączkowski, “Global special regular solutions to the Navier–Stokes equations in axially symmetric domains under boundary slip conditions”, Diss. Math., 432 (2005), 1–138 | DOI | MR | Zbl

[26] W. M. Zajączkowski, “Global regular solutions to the Navier–Stokes equations in an axially symmetric domain”, Top. Meth. Nonlin. Anal. (to appear)

[27] W. Alame, “On the existence of solutions for the nonstationary Stokes system with slip boundary conditions”, Appl. Math., 32 (2005), 195–223 | MR | Zbl

[28] W. M. Zajączkowski, “Large time existence of solutions to the Navier–Stokes equations in axially symmetric domains with inflow and outflow” (to appear)

[29] P. B. Mucha, “Stability of nontrivial solutions of the Navier–Stokes system on the three dimensional torus”, J. Diff. Equations, 172 (2001), 359–375 | DOI | MR | Zbl

[30] P. B. Mucha, “On cylindrical symmetric flows through pipe-like domains”, J. Diff. Equations, 201 (2004), 304–323 | DOI | MR | Zbl

[31] P. B. Mucha, “Stability of 2d incompressible flow in $\mathbb R^3$”, J. Diff. Equations, 245 (2008), 2355–2367 | DOI | MR | Zbl

[32] P. B. Mucha, “Stability of constant solutions to the Navier–Stokes system in $\mathbb R^3$”, Appl. Math., 28 (2001), 301–310 | MR | Zbl