Special global regular solutions to the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 120-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the existence results of global regular solutions to the Navier–Stokes equations which are close either to two-dimensional or to axially-symmetric solutions. We assume the slip-boundary conditions. Moreover, the considered domains are either cylindrical or axially symmetric. We examine problems with and without inflow-outflow. All proofs can be divided into two steps: 1. long time existence by either the Leray–Schauder fixed point theorem or the method of successive approximations, 2. global existence by prolongation of the local solution with respect to time. Bibl. – 32 titles.
@article{ZNSL_2008_362_a5,
     author = {W. M. Zaj\k{a}czkowski},
     title = {Special global regular solutions to the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--152},
     publisher = {mathdoc},
     volume = {362},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/}
}
TY  - JOUR
AU  - W. M. Zajączkowski
TI  - Special global regular solutions to the Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 120
EP  - 152
VL  - 362
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/
LA  - en
ID  - ZNSL_2008_362_a5
ER  - 
%0 Journal Article
%A W. M. Zajączkowski
%T Special global regular solutions to the Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 120-152
%V 362
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/
%G en
%F ZNSL_2008_362_a5
W. M. Zajączkowski. Special global regular solutions to the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 120-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a5/