The Oberbeck--Boussinesq approximation for the motion of two incompressible fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 92-119

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Oberbeck–Boussinesq approximation for unsteady motion of a drop in another fluid. On the unknown interface between the liquids, the surface tension is taken into account. We study this problem in Hölder classes of functions where local existence theorem for the problem is proved. The proof is based on the fact that the solvability of the problem with a temperature independent right-hand side was obtaind earlier. For a given velocity vector field of the fluids, we arrive at a diffraction problem for the heat equation which is solvable by well-known methods. Existence of a solution to the complete problem is proved by successive approximations. Bibl. – 10 titles.
@article{ZNSL_2008_362_a4,
     author = {I. V. Denisova and Sh. Nechasova},
     title = {The {Oberbeck--Boussinesq} approximation for the motion of two incompressible fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--119},
     publisher = {mathdoc},
     volume = {362},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/}
}
TY  - JOUR
AU  - I. V. Denisova
AU  - Sh. Nechasova
TI  - The Oberbeck--Boussinesq approximation for the motion of two incompressible fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 92
EP  - 119
VL  - 362
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/
LA  - ru
ID  - ZNSL_2008_362_a4
ER  - 
%0 Journal Article
%A I. V. Denisova
%A Sh. Nechasova
%T The Oberbeck--Boussinesq approximation for the motion of two incompressible fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 92-119
%V 362
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/
%G ru
%F ZNSL_2008_362_a4
I. V. Denisova; Sh. Nechasova. The Oberbeck--Boussinesq approximation for the motion of two incompressible fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 92-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/