The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 92-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Oberbeck–Boussinesq approximation for unsteady motion of a drop in another fluid. On the unknown interface between the liquids, the surface tension is taken into account. We study this problem in Hölder classes of functions where local existence theorem for the problem is proved. The proof is based on the fact that the solvability of the problem with a temperature independent right-hand side was obtaind earlier. For a given velocity vector field of the fluids, we arrive at a diffraction problem for the heat equation which is solvable by well-known methods. Existence of a solution to the complete problem is proved by successive approximations. Bibl. – 10 titles.
@article{ZNSL_2008_362_a4,
     author = {I. V. Denisova and Sh. Nechasova},
     title = {The {Oberbeck{\textendash}Boussinesq} approximation for the motion of two incompressible fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--119},
     year = {2008},
     volume = {362},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/}
}
TY  - JOUR
AU  - I. V. Denisova
AU  - Sh. Nechasova
TI  - The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 92
EP  - 119
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/
LA  - ru
ID  - ZNSL_2008_362_a4
ER  - 
%0 Journal Article
%A I. V. Denisova
%A Sh. Nechasova
%T The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 92-119
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/
%G ru
%F ZNSL_2008_362_a4
I. V. Denisova; Sh. Nechasova. The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 92-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a4/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, T. 6, Nauka, M., 1986 | MR

[2] I. V. Denisova, V. A. Solonnikov, “Razreshimost v gëlderovskikh prostranstvakh modelnoi nachalno-kraevoi zadachi, porozhdënnoi zadachei o dvizhenii dvukh zhidkostei”, Zap. nauchn. semin. LOMI, 188, Nauka, L., 1991, 5–44 | MR | Zbl

[3] I. V. Denisova, “Razreshimost v gëlderovskikh prostranstvakh lineinoi zadachi o dvizhenii dvukh zhidkostei, razdelënnykh zamknutoi poverkhnostyu”, Algebra i analiz, 5:4 (1993), 122–148 | MR | Zbl

[4] I. V. Denisova, V. A. Solonnikov, “Klassicheskaya razreshimost zadachi o dvizhenii dvukh vyazkikh neszhimaemykh zhidkostei”, Algebra i analiz, 7:5 (1995), 101–142 | MR | Zbl

[5] I. V. Denisova, “Model problem connected with the motion of two incompressible fluids”, Adv. Math. Sci. Appl., 17:1 (2007), 195–223 | MR | Zbl

[6] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[7] V. A. Solonnikov, “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zap. nauchn. semin. LOMI, 38, Nauka, L., 1973, 153–231 | MR | Zbl

[8] I. Sh. Mogilevskiĭ, V. A. Solonnikov, “On the solvability of an evolution free boundary problem for the Navier–Stokes equations in Hölder spaces of functions”, Mathematical Problems Relating to the Navier–Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Scientific Publishing Co., Singapore–London, 1992, 105–181 | MR | Zbl

[9] N. M. Gyunter, Teoriya potentsiala i eë primenenie k osnovnym zadacham matematicheskoi fiziki, Gos. iz-vo tekhniko-teoreticheskoi literatury, M., 1953 | MR

[10] J. Schauder, “Potentialtheoretische Untersuchungen”, Math. Z., 33 (1931), 602–640 | DOI | MR | Zbl