Solution of a model problem related to singularly perturbed free boundaries of Stefan type
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 64-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a model problem of conjunction of two phases with a small parameter $\kappa$ in front of the principal term of a free boundary condition. The coercive estimate for the solution with a constant independent of $\kappa$ is derived in terms of a weighted Hölder space. Bibl. – 9 titles.
@article{ZNSL_2008_362_a3,
     author = {G. I. Bizhanova},
     title = {Solution of a~model problem related to singularly perturbed free boundaries of {Stefan} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--91},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/}
}
TY  - JOUR
AU  - G. I. Bizhanova
TI  - Solution of a model problem related to singularly perturbed free boundaries of Stefan type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 64
EP  - 91
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/
LA  - en
ID  - ZNSL_2008_362_a3
ER  - 
%0 Journal Article
%A G. I. Bizhanova
%T Solution of a model problem related to singularly perturbed free boundaries of Stefan type
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 64-91
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/
%G en
%F ZNSL_2008_362_a3
G. I. Bizhanova. Solution of a model problem related to singularly perturbed free boundaries of Stefan type. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 64-91. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/

[1] H. Bateman, A. Erdélyi, The tables of integral transforms, Nauka, M., 1969 | Zbl

[2] B. V. Bazaliy, “The Stefan problem”, Dokl. Akad.Nauk Ukrain. SSR. Ser. A, 11 (1986), 3–7 | MR

[3] V. S.Belonosov, T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations, Novosibirsk Gos. Univ., Novosibirsk, 1975 (Russian) | MR

[4] St. Petersburg Math. J., 6:1 (1995), 51–75 | MR | Zbl | Zbl

[5] V. A. Florin, “Compression of earth medium and filtration under the alternating porosity with consideration of the influence of latent water”, Izv. AN SSSR. OTN, 1 (1951), 1625–1649

[6] Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1967 | MR | MR

[7] E. V. Radkevich, “On the solvability of general non-stationary problems with free boundary”, Some Applications of Functional Analysis to the Problems of Mathematical Physics, Akad. Nauk SSSR, Sibirsk. Otdel., Inst. of Math., Novosibirsk, 1986, 85–111 | MR

[8] J. F. Rodrigues, V. A. Solonnikov, F. Yi, “On a parabolic system with time derivative in the boundary conditions and related free boundary problems”, Math. Ann., 315 (1999), 61–95 | DOI | MR | Zbl

[9] V. A. Solonnikov, On an estimate of the maximum of a derivative modulus for a solution of a uniform parabolic initial-boundary value problem, Preprint P-2-77, LOMI, 1977 (Russian)