@article{ZNSL_2008_362_a3,
author = {G. I. Bizhanova},
title = {Solution of a~model problem related to singularly perturbed free boundaries of {Stefan} type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--91},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/}
}
G. I. Bizhanova. Solution of a model problem related to singularly perturbed free boundaries of Stefan type. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 64-91. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a3/
[1] H. Bateman, A. Erdélyi, The tables of integral transforms, Nauka, M., 1969 | Zbl
[2] B. V. Bazaliy, “The Stefan problem”, Dokl. Akad.Nauk Ukrain. SSR. Ser. A, 11 (1986), 3–7 | MR
[3] V. S.Belonosov, T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations, Novosibirsk Gos. Univ., Novosibirsk, 1975 (Russian) | MR
[4] St. Petersburg Math. J., 6:1 (1995), 51–75 | MR | Zbl | Zbl
[5] V. A. Florin, “Compression of earth medium and filtration under the alternating porosity with consideration of the influence of latent water”, Izv. AN SSSR. OTN, 1 (1951), 1625–1649
[6] Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1967 | MR | MR
[7] E. V. Radkevich, “On the solvability of general non-stationary problems with free boundary”, Some Applications of Functional Analysis to the Problems of Mathematical Physics, Akad. Nauk SSSR, Sibirsk. Otdel., Inst. of Math., Novosibirsk, 1986, 85–111 | MR
[8] J. F. Rodrigues, V. A. Solonnikov, F. Yi, “On a parabolic system with time derivative in the boundary conditions and related free boundary problems”, Math. Ann., 315 (1999), 61–95 | DOI | MR | Zbl
[9] V. A. Solonnikov, On an estimate of the maximum of a derivative modulus for a solution of a uniform parabolic initial-boundary value problem, Preprint P-2-77, LOMI, 1977 (Russian)