Boundary layer equations in the problem of axially symmetric jet flow
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 48-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of stationary axially symmetric jet flow of viscous incompressible fluid from a round tube into the free space is considered. Mathematical model of this flow in the Mises variables and for large Reynolds numbers is reduced to the boundary valued problem for degenerative integro-differential equation of the second order. Existence and uniqueness of the bounded solutions to this problem are proved and stabilization as a time-like variable increases is shown. Bibl. – 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_362_a2,
     author = {V. S. Belonosov and V. V. Pukhnachov},
     title = {Boundary layer equations in the problem of axially symmetric jet flow},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--63},
     publisher = {mathdoc},
     volume = {362},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a2/}
}
                      
                      
                    TY - JOUR AU - V. S. Belonosov AU - V. V. Pukhnachov TI - Boundary layer equations in the problem of axially symmetric jet flow JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 48 EP - 63 VL - 362 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a2/ LA - ru ID - ZNSL_2008_362_a2 ER -
V. S. Belonosov; V. V. Pukhnachov. Boundary layer equations in the problem of axially symmetric jet flow. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a2/