On a~reverse H\"older inequality for a~class of suitable weak solutions to the Navier--Stokes equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 325-336
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, we consider a special class of suitable weak solutions to the three-dimensional nonstationary Navier–Stokes equations and prove a reverse Hölder inequality for them. The interesting feature of this class is that it contains solutions having majorants invariant to the Navier–Stokes scaling. Bibl. – 3 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_362_a11,
     author = {G. A. Seregin},
     title = {On a~reverse {H\"older} inequality for a~class of suitable weak solutions to the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {325--336},
     publisher = {mathdoc},
     volume = {362},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/}
}
                      
                      
                    TY - JOUR AU - G. A. Seregin TI - On a~reverse H\"older inequality for a~class of suitable weak solutions to the Navier--Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 325 EP - 336 VL - 362 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/ LA - en ID - ZNSL_2008_362_a11 ER -
G. A. Seregin. On a~reverse H\"older inequality for a~class of suitable weak solutions to the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 325-336. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/