On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 325-336
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, we consider a special class of suitable weak solutions to the three-dimensional nonstationary Navier–Stokes equations and prove a reverse Hölder inequality for them. The interesting feature of this class is that it contains solutions having majorants invariant to the Navier–Stokes scaling. Bibl. – 3 titles.
@article{ZNSL_2008_362_a11,
author = {G. A. Seregin},
title = {On a~reverse {H\"older} inequality for a~class of suitable weak solutions to the {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {325--336},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/}
}
TY - JOUR AU - G. A. Seregin TI - On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 325 EP - 336 VL - 362 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/ LA - en ID - ZNSL_2008_362_a11 ER -
G. A. Seregin. On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 325-336. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a11/
[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] M. Giaquinta, M. Stuwe, “On the partial regularity of weak solutions of nonlinear parabolic systems”, Math. Z., 179 (1982), 437–451 | DOI | MR | Zbl
[3] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl