@article{ZNSL_2008_362_a10,
author = {J. F. Rodrigues and L. Santos and J. M. Urbano},
title = {The nonlinear $N$-membranes evolution problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {303--324},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/}
}
J. F. Rodrigues; L. Santos; J. M. Urbano. The nonlinear $N$-membranes evolution problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 303-324. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/
[1] G. Akagi, M. Ôtani, “Evolution inclusions governed by subdifferentials in reflexive Banach spaces”, J. Evol. Eq., 4 (2004), 519–541 | DOI | MR | Zbl
[2] A. Azevedo, J. F. Rodrigues, L. Santos, “Remarks on the two and three membranes problem”, Recent advances in elliptic and parabolic problems, World Sci. Publ., Hackensack, NJ, 2005, 19–33 | MR | Zbl
[3] A. Azevedo, J. F. Rodrigues, L. Santos, “The $N$-membranes problem for quasilinear degenerate systems”, Interfaces Free Bound., 7:3 (2005), 319–337 | MR | Zbl
[4] L. Boccardo, A. Dall'Aglio, T. Gallouët, L. Orsina, “Existence and regularity results for some nonlinear parabolic equations”, Adv. Math. Sci. Appl., 9:2 (1999), 1017–1031 | MR | Zbl
[5] L. Boccardo, F. Murat, “Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations”, Nonlinear Anal., 19:6 (1992), 581–597 | DOI | MR | Zbl
[6] P. Charrier, G. M. Troianiello, “On strong solutions to parabolic unilateral problems with obstacle dependent on time”, J. Math. Anal. Appl., 65 (1978), 110–125 | DOI | MR | Zbl
[7] Y. Z. Chen, E. DiBenedetto, “Boundary estimates for solutions of nonlinear degenerate parabolic systems”, J. Reine Angew. Math., 395 (1989), 102–131 | MR
[8] M. Chipot, G. Vergara-Cafarelli, “The $N$-membranes problem”, Appl. Math. Optim., 13:3 (1985), 231–249 | DOI | MR
[9] E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993 | MR
[10] E. DiBenedetto, J. M. Urbano, V. Vespri, “Current issues on singular and degenerate evolution equations”, Evolutionary Equations, Vol. 1, Handbook of Differential Equations, Elsevier, 2004, 169–286 | MR | Zbl
[11] F. Donati, “A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems”, Nonlinear Anal., 6:6 (1982), 585–597 | DOI | MR | Zbl
[12] F. Donati, M. Mazteu, “On the strong solutions of some nonlinear evolution problems in ordered Banach spaces”, Boll. Un. Mat. Ital. B (5), 16:1 (1979), 54–73 | MR | Zbl
[13] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Uraltceva, Linear and quasilinear equations of parabolic type, AMS Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, 1968
[14] G. Lieberman, “Boundary and initial regularity for solutions of degenerate parabolic equations”, Nonlinear Anal., 20:5 (1993), 551–569 | DOI | MR | Zbl
[15] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl
[16] J. F. Rodrigues, L. Santos, On a constrained reaction-diffusion system related to multiphase problems, Accepted for publication in DCDS, Issue in honour of Mayan Mimura arXiv: 0711.2814 | MR
[17] J. F. Rodrigues, L. Santos, J. M. Urbano, The quasilinear $N$-membranes problem with time-dependent Dirichlet data, In preparation
[18] R. E. Showalter, Monotone operators in Banach spaces and nonlinear partial differential equations, Amer. Math. Soc., Providence, 1997 | MR | Zbl
[19] J. Simon, “Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques nonlinéaires”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:4 (1975), 585–609 | MR | Zbl
[20] G. Vergara-Caffarelli, “Regolarità di un problema di disequazioni variazionali relativo a due membrane”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 50 (1971), 659–662 | MR | Zbl
[21] G. Vergara-Caffarelli, “Variational inequalities for two surfaces of constant mean curvature”, Arch. Rational Mech. Anal., 56 (1974/75), 334–347 | DOI | MR | Zbl
[22] S. Zheng, Nonlinear evolution equations, Monographs and Surveys in Pure and Applied Mathematics, 133, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl