The nonlinear $N$-membranes evolution problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 303-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The parabolic $N$-membranes problem for the $p$-Laplacian and the complete order constraint on the components of the solution is studied in what concerns the approximation, the regularity and the stability of the variational solutions. We extend to the evolutionary case the characterization of the Lagrange multipliers associated with the ordering constraint in terms of the characteristic functions of the coincidence sets. We give continuous dependence results, and study the asymptotic behavior as $t\to\infty$ of the solution and the coincidence sets, showing that they converge to their stationary counterparts. Bibl. – 22 titles.
@article{ZNSL_2008_362_a10,
     author = {J. F. Rodrigues and L. Santos and J. M. Urbano},
     title = {The nonlinear $N$-membranes evolution problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--324},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/}
}
TY  - JOUR
AU  - J. F. Rodrigues
AU  - L. Santos
AU  - J. M. Urbano
TI  - The nonlinear $N$-membranes evolution problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 303
EP  - 324
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/
LA  - en
ID  - ZNSL_2008_362_a10
ER  - 
%0 Journal Article
%A J. F. Rodrigues
%A L. Santos
%A J. M. Urbano
%T The nonlinear $N$-membranes evolution problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 303-324
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/
%G en
%F ZNSL_2008_362_a10
J. F. Rodrigues; L. Santos; J. M. Urbano. The nonlinear $N$-membranes evolution problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 303-324. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a10/

[1] G. Akagi, M. Ôtani, “Evolution inclusions governed by subdifferentials in reflexive Banach spaces”, J. Evol. Eq., 4 (2004), 519–541 | DOI | MR | Zbl

[2] A. Azevedo, J. F. Rodrigues, L. Santos, “Remarks on the two and three membranes problem”, Recent advances in elliptic and parabolic problems, World Sci. Publ., Hackensack, NJ, 2005, 19–33 | MR | Zbl

[3] A. Azevedo, J. F. Rodrigues, L. Santos, “The $N$-membranes problem for quasilinear degenerate systems”, Interfaces Free Bound., 7:3 (2005), 319–337 | MR | Zbl

[4] L. Boccardo, A. Dall'Aglio, T. Gallouët, L. Orsina, “Existence and regularity results for some nonlinear parabolic equations”, Adv. Math. Sci. Appl., 9:2 (1999), 1017–1031 | MR | Zbl

[5] L. Boccardo, F. Murat, “Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations”, Nonlinear Anal., 19:6 (1992), 581–597 | DOI | MR | Zbl

[6] P. Charrier, G. M. Troianiello, “On strong solutions to parabolic unilateral problems with obstacle dependent on time”, J. Math. Anal. Appl., 65 (1978), 110–125 | DOI | MR | Zbl

[7] Y. Z. Chen, E. DiBenedetto, “Boundary estimates for solutions of nonlinear degenerate parabolic systems”, J. Reine Angew. Math., 395 (1989), 102–131 | MR

[8] M. Chipot, G. Vergara-Cafarelli, “The $N$-membranes problem”, Appl. Math. Optim., 13:3 (1985), 231–249 | DOI | MR

[9] E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993 | MR

[10] E. DiBenedetto, J. M. Urbano, V. Vespri, “Current issues on singular and degenerate evolution equations”, Evolutionary Equations, Vol. 1, Handbook of Differential Equations, Elsevier, 2004, 169–286 | MR | Zbl

[11] F. Donati, “A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems”, Nonlinear Anal., 6:6 (1982), 585–597 | DOI | MR | Zbl

[12] F. Donati, M. Mazteu, “On the strong solutions of some nonlinear evolution problems in ordered Banach spaces”, Boll. Un. Mat. Ital. B (5), 16:1 (1979), 54–73 | MR | Zbl

[13] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Uraltceva, Linear and quasilinear equations of parabolic type, AMS Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, 1968

[14] G. Lieberman, “Boundary and initial regularity for solutions of degenerate parabolic equations”, Nonlinear Anal., 20:5 (1993), 551–569 | DOI | MR | Zbl

[15] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl

[16] J. F. Rodrigues, L. Santos, On a constrained reaction-diffusion system related to multiphase problems, Accepted for publication in DCDS, Issue in honour of Mayan Mimura arXiv: 0711.2814 | MR

[17] J. F. Rodrigues, L. Santos, J. M. Urbano, The quasilinear $N$-membranes problem with time-dependent Dirichlet data, In preparation

[18] R. E. Showalter, Monotone operators in Banach spaces and nonlinear partial differential equations, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[19] J. Simon, “Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques nonlinéaires”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:4 (1975), 585–609 | MR | Zbl

[20] G. Vergara-Caffarelli, “Regolarità di un problema di disequazioni variazionali relativo a due membrane”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 50 (1971), 659–662 | MR | Zbl

[21] G. Vergara-Caffarelli, “Variational inequalities for two surfaces of constant mean curvature”, Arch. Rational Mech. Anal., 56 (1974/75), 334–347 | DOI | MR | Zbl

[22] S. Zheng, Nonlinear evolution equations, Monographs and Surveys in Pure and Applied Mathematics, 133, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl