@article{ZNSL_2008_362_a1,
author = {A. Arkhipova},
title = {Variational problem with an obstacle in $\mathbb R^N$ for a~class of quadratic functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--47},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/}
}
A. Arkhipova. Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 15-47. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/
[1] M. Giaquinta, E. Giusti, “On the regularity of the minima of variational integrals”, Acta Math., 148 (1982), 31–46 | DOI | MR | Zbl
[2] M. Giaquinta, E. Giusti, “The singular set of the minima of certain quadratic functionals”, Ann. Scuola Norm Sup. Pisa Cl. Sci. (4), 11 (1984), 45–55 | MR | Zbl
[3] S. Hildebrandt, K.-O. Widman, “Variational inequalities for vector-valued functions”, J. Reine Angew. Math., 309 (1979), 191–220 | MR | Zbl
[4] S. Hildebrandt, H. Kaul, K.-O. Widman, “An existence theorem for harmonic mappings of Riemannian manifolds”, Acta Math., 138 (1977), 1–16 | DOI | MR | Zbl
[5] S. Hildebrandt, Harmonic mappings of Riemannian manifolds, Lect. Notes Math., 1161, Springer, Berlin, 1985 | MR
[6] M. Fuchs, “A regularity theorem for energy minimizing maps of Riemannian manifold”, Commun. PDE, 12:11 (1987), 1309–1321 | DOI | MR | Zbl
[7] M. Fuchs, N. Fusco, “Partial regularity results for vector-valued functions which minimize certain functionals having non quadratic growth under smooth side conditions”, J. Reine Angew. Math., 390 (1988), 67–78 | MR | Zbl
[8] M. Fuchs, “Some remarks on the boundary regularity for minima of variational problems with obstacles”, Manuscr. Math., 54 (1985), 107–119 | DOI | MR
[9] F. Duzaar, M. Fuchs, “Optimal regularity theorem for variational problems with obstacles”, Manuscr. Math., 56 (1986), 209–234 | DOI | MR
[10] F. Duzaar, “Variational inequalities and harmonic maps”, J. Reine Angew. Math., 374 (1987), 39–60 | DOI | MR | Zbl
[11] J. Eells, J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[12] R. Hamilton, Harmonic maps of manifolds with boundary, Lect. Notes Math., 471, Springer, Berlin, 1975 | MR | Zbl
[13] R. Schoen, K. Uhlenbeck, “A regularity theory for harmonic maps”, J. Diff. Geom., 17 (1982), 307–335 | MR | Zbl
[14] R. Schoen, K. Uhlenbeck, “Regularity of minimizing harmonic maps into sphere”, Invent. Math., 78 (1984), 89–100 | DOI | MR | Zbl
[15] F. H. Lin, Ch. Y. Wang, “Harmonic and quasiharmonic spheres”, Comm. Anal. Geom., 7:2 (1999), 397–429 | MR | Zbl
[16] T. Riviere, “Everywhere discontinuous harmonic maps into spheres”, Acta Math., 175 (1995), 197–226 | DOI | MR | Zbl
[17] E. Giusti, Direct Methods in the Calculus of Variations, World Sci. Publ., River Edge, NJ, 2003 | MR | Zbl
[18] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic systems, Ann. Math. Stidies, 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl
[19] A. Arkhipova, “On the regularity of solutions of boundary-value problem for quasilinear elliptic systems with quadratic nonlinearities”, J. Math. Sci., 80:6 (1996), 2208–2225 | DOI | MR
[20] M. Giaquinta, E. Giusti, “Nonlinear elliptic systems with quadratic growth”, Manuscr. Math., 24:3 (1978), 323–349 | DOI | MR | Zbl
[21] Y. Chen, M. Struwe, “Existence and partial regularity results for the heat flow for harmonic maps”, Math. Zh., 201 (1989), 83–103 | DOI | MR | Zbl
[22] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Spriger-Verlag, Berlin, 1983 | MR | Zbl
[23] Y. Chen, F.-H. Lin, “Evolution of harmonic maps with Dirichlet boundary conditions”, Comm. Anal. Geom., 1 (1993), 327–346 | MR | Zbl
[24] L. C. Evans, “Partial regularity for stationary harmonic maps into spheres”, Arch. Rat. Mech. Anal., 116 (1991), 101–113 | DOI | MR | Zbl
[25] J. Jost, M. Meier, “Boundary regularity for minima of certain quadratic functionals”, Math. Ann., 262 (1983), 549–561 | DOI | MR | Zbl