Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 15-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A variational problem with an obstacle for a certain class of quadratic functionals is considered. It is assumed that admissible vector-valued functions satisfy the Dirichlet boundary condition and the obstacle is a given smooth $(N-1)$-dimensional surface $S$ in $\mathbb R^N$. It is not supposed that the surface $S$ is bounded. It is proved that any minimizer $u$ of such an obstacle problem is a partially smooth function up to the boundary of prescribed domain. It is shown that $(n-2)$-Hausdorff measure of the set of singular points is zero. Moreover, $u$ is a weak solution of quasilinear system with two kinds of quadratic nonlinearities in the gradient. This is proved by a local penalty method. Bibl. – 25 titles.
@article{ZNSL_2008_362_a1,
     author = {A. Arkhipova},
     title = {Variational problem with an obstacle in $\mathbb R^N$ for a~class of quadratic functionals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--47},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/}
}
TY  - JOUR
AU  - A. Arkhipova
TI  - Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 15
EP  - 47
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/
LA  - en
ID  - ZNSL_2008_362_a1
ER  - 
%0 Journal Article
%A A. Arkhipova
%T Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 15-47
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/
%G en
%F ZNSL_2008_362_a1
A. Arkhipova. Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 15-47. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a1/

[1] M. Giaquinta, E. Giusti, “On the regularity of the minima of variational integrals”, Acta Math., 148 (1982), 31–46 | DOI | MR | Zbl

[2] M. Giaquinta, E. Giusti, “The singular set of the minima of certain quadratic functionals”, Ann. Scuola Norm Sup. Pisa Cl. Sci. (4), 11 (1984), 45–55 | MR | Zbl

[3] S. Hildebrandt, K.-O. Widman, “Variational inequalities for vector-valued functions”, J. Reine Angew. Math., 309 (1979), 191–220 | MR | Zbl

[4] S. Hildebrandt, H. Kaul, K.-O. Widman, “An existence theorem for harmonic mappings of Riemannian manifolds”, Acta Math., 138 (1977), 1–16 | DOI | MR | Zbl

[5] S. Hildebrandt, Harmonic mappings of Riemannian manifolds, Lect. Notes Math., 1161, Springer, Berlin, 1985 | MR

[6] M. Fuchs, “A regularity theorem for energy minimizing maps of Riemannian manifold”, Commun. PDE, 12:11 (1987), 1309–1321 | DOI | MR | Zbl

[7] M. Fuchs, N. Fusco, “Partial regularity results for vector-valued functions which minimize certain functionals having non quadratic growth under smooth side conditions”, J. Reine Angew. Math., 390 (1988), 67–78 | MR | Zbl

[8] M. Fuchs, “Some remarks on the boundary regularity for minima of variational problems with obstacles”, Manuscr. Math., 54 (1985), 107–119 | DOI | MR

[9] F. Duzaar, M. Fuchs, “Optimal regularity theorem for variational problems with obstacles”, Manuscr. Math., 56 (1986), 209–234 | DOI | MR

[10] F. Duzaar, “Variational inequalities and harmonic maps”, J. Reine Angew. Math., 374 (1987), 39–60 | DOI | MR | Zbl

[11] J. Eells, J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[12] R. Hamilton, Harmonic maps of manifolds with boundary, Lect. Notes Math., 471, Springer, Berlin, 1975 | MR | Zbl

[13] R. Schoen, K. Uhlenbeck, “A regularity theory for harmonic maps”, J. Diff. Geom., 17 (1982), 307–335 | MR | Zbl

[14] R. Schoen, K. Uhlenbeck, “Regularity of minimizing harmonic maps into sphere”, Invent. Math., 78 (1984), 89–100 | DOI | MR | Zbl

[15] F. H. Lin, Ch. Y. Wang, “Harmonic and quasiharmonic spheres”, Comm. Anal. Geom., 7:2 (1999), 397–429 | MR | Zbl

[16] T. Riviere, “Everywhere discontinuous harmonic maps into spheres”, Acta Math., 175 (1995), 197–226 | DOI | MR | Zbl

[17] E. Giusti, Direct Methods in the Calculus of Variations, World Sci. Publ., River Edge, NJ, 2003 | MR | Zbl

[18] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic systems, Ann. Math. Stidies, 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[19] A. Arkhipova, “On the regularity of solutions of boundary-value problem for quasilinear elliptic systems with quadratic nonlinearities”, J. Math. Sci., 80:6 (1996), 2208–2225 | DOI | MR

[20] M. Giaquinta, E. Giusti, “Nonlinear elliptic systems with quadratic growth”, Manuscr. Math., 24:3 (1978), 323–349 | DOI | MR | Zbl

[21] Y. Chen, M. Struwe, “Existence and partial regularity results for the heat flow for harmonic maps”, Math. Zh., 201 (1989), 83–103 | DOI | MR | Zbl

[22] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Spriger-Verlag, Berlin, 1983 | MR | Zbl

[23] Y. Chen, F.-H. Lin, “Evolution of harmonic maps with Dirichlet boundary conditions”, Comm. Anal. Geom., 1 (1993), 327–346 | MR | Zbl

[24] L. C. Evans, “Partial regularity for stationary harmonic maps into spheres”, Arch. Rat. Mech. Anal., 116 (1991), 101–113 | DOI | MR | Zbl

[25] J. Jost, M. Meier, “Boundary regularity for minima of certain quadratic functionals”, Math. Ann., 262 (1983), 549–561 | DOI | MR | Zbl