Small deviations of modified sums of independent random  variables
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 109-122
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S_n=X_1+\dots+X_n$, $n\ge1$, $S_0=0$, where $X_1,X_2,\dots$ are independent identically distributed random variables such that the distributions of $S_n/B_n$ converge weakly to nondegenerate distribution $F_\alpha$ as $n\to\infty$ for some positive $B_n$. 
We study the asymptotic behavior of sums such as
$$
\sum_{n\ge1}f_n\,\mathbf P\Bigl(\frac1{B_n}R^*_n\le\frac r{\phi_n}\Bigr),\qquad r\nearrow\infty,
$$
where
$$
R^*_n=\max_{0\le k\le n}(S_k+d(k/n)\,S_n)-\min_{0\le k\le n}(S_k+d(k/n)\,S_n),
$$
a function $d(t)$ is continuous on $[0,1]$ and has a power decrease at zero point
$$
f_n\ge0,\qquad\sum_{n\ge1}f_n=\infty,\qquad\phi_n\nearrow\infty.
$$
Bibl. – 13 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_361_a7,
     author = {L. V. Rozovskii},
     title = {Small deviations of modified sums of independent random  variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {361},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/}
}
                      
                      
                    L. V. Rozovskii. Small deviations of modified sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 109-122. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/