Small deviations of modified sums of independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 109-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_n=X_1+\dots+X_n$, $n\ge1$, $S_0=0$, where $X_1,X_2,\dots$ are independent identically distributed random variables such that the distributions of $S_n/B_n$ converge weakly to nondegenerate distribution $F_\alpha$ as $n\to\infty$ for some positive $B_n$. We study the asymptotic behavior of sums such as $$ \sum_{n\ge1}f_n\,\mathbf P\Bigl(\frac1{B_n}R^*_n\le\frac r{\phi_n}\Bigr),\qquad r\nearrow\infty, $$ where $$ R^*_n=\max_{0\le k\le n}(S_k+d(k/n)\,S_n)-\min_{0\le k\le n}(S_k+d(k/n)\,S_n), $$ a function $d(t)$ is continuous on $[0,1]$ and has a power decrease at zero point $$ f_n\ge0,\qquad\sum_{n\ge1}f_n=\infty,\qquad\phi_n\nearrow\infty. $$ Bibl. – 13 titles.
@article{ZNSL_2008_361_a7,
     author = {L. V. Rozovskii},
     title = {Small deviations of modified sums of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--122},
     year = {2008},
     volume = {361},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Small deviations of modified sums of independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 109
EP  - 122
VL  - 361
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/
LA  - ru
ID  - ZNSL_2008_361_a7
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Small deviations of modified sums of independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 109-122
%V 361
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/
%G ru
%F ZNSL_2008_361_a7
L. V. Rozovskii. Small deviations of modified sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 109-122. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a7/

[1] A. A. Mogulskii, “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 19 (1974), 755–765 | MR

[2] L. V. Rozovskii, “O tochnoi asimptotike v slabom zakone bolshikh chisel dlya summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya ustoichivogo zakona”, Teoriya veroyatn. i ee primen., 48 (2003), 589–596 | MR | Zbl

[3] A. Spataru, “Precise asymptotics in Spitzer's law of large numbers”, J. Theor. Probability, 12 (1999), 811–819 | DOI | MR | Zbl

[4] A. Gut, A. Spataru, “Precise asymptotics in the Baum–Katz and Davis laws of large numbers”, J. Math. Anal. Appl., 248 (2000), 233–246 | DOI | MR | Zbl

[5] A. Gut, A. Spataru, “Precise asymptotics in the law of the iterated logarithm”, Ann. Probab., 28 (2000), 1870–1883 | DOI | MR | Zbl

[6] L. X. Zhang, On the rates of the other law of the logarithm, Manuscript , 2003 http: www.math.zju.edu.cn/zlx/mypapers2/otherLL.pdf

[7] L. V. Rozovskii, “O tochnoi asimptotike v slabom zakone bolshikh chisel dlya summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya ustoichivogo zakona. 2”, Teoriya veroyatn. i ee primen., 49 (2004), 803–813 | MR

[8] T. Pang, Z. Lin, On the rates of the Chung-type law of logarithm, Manuscript, 2006

[9] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl

[10] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, Fizmatlit, M., 1986 | MR | Zbl

[11] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl

[12] W. Feller, “The asymptotic distribution of the range of sums of independent random variables”, Ann. Math. Stat., 22:3 (1951), 427–432 | DOI | MR | Zbl

[13] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000 | Zbl