Optimal local first exit time
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 83-108

Voir la notice de l'article provenant de la source Math-Net.Ru

A random process and the corresponding class of so called local first exit times are considered. For a special functional depending on Markov times the problem to find the optimal one is investigated. A description of the class is obtained. For diffusion Markov processes the folowing alternative is proved: either the global first exit time is optimal (trivial case), or in the given class there are no optimal Markov times. For a non-Markov piece-wise increasing process a non-trivial example of the local first exit time is constructed. An application of the problem to insurance is discussed. Bibl. – 7 titles.
@article{ZNSL_2008_361_a6,
     author = {S. S. Rasova and B. P. Harlamov},
     title = {Optimal local first exit time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--108},
     publisher = {mathdoc},
     volume = {361},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a6/}
}
TY  - JOUR
AU  - S. S. Rasova
AU  - B. P. Harlamov
TI  - Optimal local first exit time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 83
EP  - 108
VL  - 361
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a6/
LA  - ru
ID  - ZNSL_2008_361_a6
ER  - 
%0 Journal Article
%A S. S. Rasova
%A B. P. Harlamov
%T Optimal local first exit time
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 83-108
%V 361
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a6/
%G ru
%F ZNSL_2008_361_a6
S. S. Rasova; B. P. Harlamov. Optimal local first exit time. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 83-108. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a6/