Lévy–Khinchin representation of a class of signed measures
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 145-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study properties of symmetric stable measures with the index of stability $\alpha\in(2,4)\cup(4,6)$. For such signed measures we construct a natural analogue of the Lévy–Khinchin representation. We show that in some special sense these measures are limit measures for the sums of independent random variables. Bibl. – 6 titles.
@article{ZNSL_2008_361_a10,
     author = {N. V. Smorodina and M. M. Faddeev},
     title = {L\'evy{\textendash}Khinchin representation of a~class of signed measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--166},
     year = {2008},
     volume = {361},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a10/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Lévy–Khinchin representation of a class of signed measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 145
EP  - 166
VL  - 361
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a10/
LA  - ru
ID  - ZNSL_2008_361_a10
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A M. M. Faddeev
%T Lévy–Khinchin representation of a class of signed measures
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 145-166
%V 361
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a10/
%G ru
%F ZNSL_2008_361_a10
N. V. Smorodina; M. M. Faddeev. Lévy–Khinchin representation of a class of signed measures. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 145-166. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a10/

[1] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, Moskva, 1986 | MR | Zbl

[2] N. V. Smorodina, “Asimptoticheskoe razlozhenie dlya raspredeleniya gladkogo odnorodnogo funktsionala ot strogo ustoichivogo sluchainogo vektora. II”, Teoriya veroyatn. i ee primen., 44:2 (1999), 458–465 | MR | Zbl

[3] S. Albeverio, N. Smorodina, “A distributional approach to multiple stochastic integrals and transformations of the Poisson measure”, Acta Appl. Math., 94 (2006), 1–19 | DOI | MR | Zbl

[4] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Nauka, Moskva, 1958

[5] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, Moskva, 1965

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovykh prostranstvakh, Izd-vo LGU, Leningrad, 1980 | MR