On hypergeometric diffusion
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 29-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with correspondence between the well-known diffusions and special functions. The new class of diffusions related to hypergeometric functions is defined. The very interesting particular case of this class consist of the hyperbolic Bessel processes. Bibl. – 6 titles.
@article{ZNSL_2008_361_a1,
     author = {A. N. Borodin},
     title = {On hypergeometric diffusion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {361},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a1/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - On hypergeometric diffusion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 29
EP  - 44
VL  - 361
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a1/
LA  - ru
ID  - ZNSL_2008_361_a1
ER  - 
%0 Journal Article
%A A. N. Borodin
%T On hypergeometric diffusion
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 29-44
%V 361
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a1/
%G ru
%F ZNSL_2008_361_a1
A. N. Borodin. On hypergeometric diffusion. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 29-44. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a1/