Arbitrage-free option prices on global markets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 5-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider explicit expressions for pricing straddles, strangle and risk reversals on currencies assuming two versions of market dynamics, namely the Garman–Kohlhagen model and the Heston model. The expressions derived in the paper are applicable for analytical and numerical pricing and for the model calibration to market data. Bibl. – 14 titles.
@article{ZNSL_2008_361_a0,
     author = {Ya. Belopol'skaya and S. Filimonova},
     title = {Arbitrage-free option prices on global markets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--28},
     year = {2008},
     volume = {361},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a0/}
}
TY  - JOUR
AU  - Ya. Belopol'skaya
AU  - S. Filimonova
TI  - Arbitrage-free option prices on global markets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 28
VL  - 361
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a0/
LA  - ru
ID  - ZNSL_2008_361_a0
ER  - 
%0 Journal Article
%A Ya. Belopol'skaya
%A S. Filimonova
%T Arbitrage-free option prices on global markets
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-28
%V 361
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a0/
%G ru
%F ZNSL_2008_361_a0
Ya. Belopol'skaya; S. Filimonova. Arbitrage-free option prices on global markets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 13, Tome 361 (2008), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_2008_361_a0/

[1] F. Black, M. Scholes, “The pricing of options and corporative liabilities”, J. Political Economy, 81:3 (1973), 637–654 | DOI | Zbl

[2] R. Merton, “Option pricing when underlying stock returns are discontinuous”, J. Financial Economics, 3 (1976), 125–144 | DOI | Zbl

[3] E. Eberlein, “Application of generalized hyperbolic Lévy motions to finance”, Lévy Processes: Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, S. Resnick, Birkhäuser Verlag, Boston, 2001, 319–337 | MR

[4] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall CRC Press, 2003 | MR

[5] S. Heston, “A Closed Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”, Review of Financial Studies, 6 (1993), 327–343 | DOI

[6] P. S. Hagan, D. Kumar, A. S. Lesniewski, D. E. Woodward, “Managing smile risk”, Wilmott Magazine, September (2002), 84–108

[7] B. Dupire, “Pricing With a Smile”, Risk, 7:1 (1994), 18–20

[8] M. B. Garman, S. W. Kohlhagen, “Foreign Currency Option Values”, J. Intern. Money Finance, 2 (1983), 231–237 | DOI

[9] H. E. Leland, “Option pricing and replication with transaction costs”, J. Finance, 40 (1985), 1283–1301 | DOI

[10] D. Sevcovic, “An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation”, Canad. Appl. Math. Quarterly, 15 (2007), 77–97 | MR | Zbl

[11] M. Brenner, E. Y. Ou, J. E. Zhang, “Hedging volatility risk”, J. Banking Finance, 30 (2006), 811–821 | DOI

[12] P. Carr, L. Wu, “Stochastic Skew in Currency Options”, J. Financial Economics, 86:1 (2007), 213–247 | DOI

[13] A. M. Malz, “Option implied probability distributions and currency excess return”, Reports Reserve Bank New York, 32, 1997

[14] T. Björk, Arbitrage Theory in Continuous Time, Oxford University Press, 1998