Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 231-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\operatorname{Diffeo}=\operatorname{Diffeo}(\mathbb R)$ denote the group of infinitely-differentiable diffeomorphisms of the real line $\mathbb R$, under the operation of composition, and let $\operatorname{Diffeo}^+$ be the subgroup of diffeomorphisms of degree $+1$, i.e. orientation-preserving diffeomorphisms. We show how to reduce the problem of determining whether or not two given elements $f,g\in\operatorname{Diffeo}$ are conjugate in $\operatorname{Diffeo}$ to associated conjugacy problems in the subgroup $\operatorname{Diffeo}^+$. The main result concerns the case when $f$ and $g$ have degree $-1$, and specifies (in an explicit and verifiable way) precisely what must be added to the assumption that their (compositional) squares are conjugate in $\operatorname{Diffeo}^+$, in order to ensure that $f$ is conjugated to $g$ by an element of $\operatorname{Diffeo}^+$. The methods involve formal power series, and results of Kopell on centralisers in the diffeomorphism group of a half-open interval. Bibl. – 4 titles.
@article{ZNSL_2008_360_a9,
     author = {A. G. O'Farrell and M. Roginskaya},
     title = {Reducing conjugacy in the full diffeomorphism group of~$\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {231--237},
     year = {2008},
     volume = {360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a9/}
}
TY  - JOUR
AU  - A. G. O'Farrell
AU  - M. Roginskaya
TI  - Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 231
EP  - 237
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a9/
LA  - en
ID  - ZNSL_2008_360_a9
ER  - 
%0 Journal Article
%A A. G. O'Farrell
%A M. Roginskaya
%T Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 231-237
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a9/
%G en
%F ZNSL_2008_360_a9
A. G. O'Farrell; M. Roginskaya. Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 231-237. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a9/

[1] J. Lubin, “Nonarchimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl

[2] N. Kopell, “Commuting diffeomorphisms”, Global Analysis, PSPM XIV, eds. J. Palis, S. Smale, Amer. Math. Soc., 1970, 165–184 | MR

[3] E. Kasner, “Conformal classification of analytic arcs or elements: Poincaré's local problem of conformal geometry”, Trans. Amer. Math. Soc., 16 (1915), 333–349 | DOI | MR | Zbl

[4] A. G. O'Farrell, “Composition of involutive power series, and reversible series”, Comput. Methods Funct. Theory, 8 (2008), 173–193 | MR